
Theorem-prover based Testing

with HOL-TestGen

Burkhart Wolff1

1Université Paris-Sud, LRI, Orsay, France
wolff@lri.fr

A Tutorial at the LRI
Orsay, 15th Jan 2009

Outline

1 Motivation and Introduction

2 From Foundations to Pragmatics

3 Advanced Test Scenarios

4 Case Studies

5 Conclusion

Outline

1 Motivation and Introduction

2 From Foundations to Pragmatics

3 Advanced Test Scenarios

4 Case Studies

5 Conclusion

Motivation and Introduction Motivation

State of the Art

“Dijkstra’s Verdict”:

Program testing can be used to show the presence of bugs, but
never to show their absence.

Is this always true?

Can we bother?

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 4

Motivation and Introduction Motivation

Our First Vision

Testing and verification may converge,
in a precise technical sense:

specification-based (black-box) unit testing

generation and management of formal test hypothesis

verification of test hypothesis (not discussed here)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 5

Motivation and Introduction Motivation

Our Second Vision

Observation:
Any testcase-generation technique is based on and limited
by underlying constraint-solution techniques.

Approach:
Testing should be integrated in an environment combining
automated and interactive proof techniques.

the test engineer must decide over, abstraction level, split
rules, breadth and depth of data structure exploration ...

we mistrust the dream of a push-button solution

byproduct: a verified test-tool

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 6

Motivation and Introduction HOL-TestGen and its Components

Components of HOL-TestGen

HOL (Higher-order Logic):

“Functional Programming Language with Quantifiers”
plus definitional libraries on Sets, Lists, . . .
can be used meta-language for Hoare Calculus for Java, Z,
. . .

HOL-TestGen:

based on the interactive theorem prover Isabelle/HOL
implements these visions

Proof General:

user interface for Isabelle and HOL-TestGen
step-wise processing of specifications/theories
shows current proof states

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 7

Motivation and Introduction HOL-TestGen and its Components

Components-Overview

Isabelle/HOL

HOL-TestGen

SML-System

ProofGeneral

Figure: The Components of HOL-TestGen

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 8

Motivation and Introduction HOL-TestGen and its Workflow

The HOL-TestGen Workflow

The HOL-TestGen workflow is basically fivefold:

1 Step I: writing a test theory (in HOL)

2 Step II: writing a test specification
(in the context of the test theory)

3 Step III: generating a test theorem (roughly: testcases)

4 Step IV: generating test data

5 Step V: generating a test script

And of course:

building an executable test driver

and running the test driver

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 9

Motivation and Introduction HOL-TestGen and its Workflow

Step I: Writing a Test Theory

Write data types in HOL:

theory List_test
imports Testing
begin

datatype ’a list =
Nil ("[]")

| Cons ’a "’a list" (infixr "#" 65)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 10

Motivation and Introduction HOL-TestGen and its Workflow

Step I: Writing a Test Theory

Write recursive functions in HOL:

consts is_sorted:: "(’a::ord) list⇒bool"
primrec

"is_sorted [] = True"
"is_sorted (x#xs) = case xs of

[] ⇒ True
| y#ys⇒((x < y) ∨(x = y))

∧ is_sorted xs"

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 11

Motivation and Introduction HOL-TestGen and its Workflow

Step II: Write a Test Specification

writing a test specification (TS)
as HOL-TestGen command:

test_spec "is_sorted (prog (l::(’a list)))"

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 12

Motivation and Introduction HOL-TestGen and its Workflow

Step III: Generating Testcases

executing the testcase generator in form of an Isabelle
proof method:

apply(gen_test_cases "prog")

concluded by the command:

store_test_thm "test_sorting"

. . . that binds the current proof state as test theorem to
the name test_sorting.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 13

Motivation and Introduction HOL-TestGen and its Workflow

Step III: Generating Testcases

The test theorem contains clauses (the test-cases):

is_sorted (prog [])
is_sorted (prog [?X1X17])
is_sorted (prog [?X2X13, ?X1X12])
is_sorted (prog [?X3X7, ?X2X6, ?X1X5])

as well as clauses (the test-hypothesis):

THYP((∃ x. is_sorted (prog [x])) −→(∀ x. is_sorted(prog [x])))
. . .
THYP((∀ l. 4 < |l| −→is_sorted(prog l))

We will discuss these hypothesises later in great detail.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 14

Motivation and Introduction HOL-TestGen and its Workflow

Step IV: Test Data Generation

On the test theorem,
all sorts of logical massages can be performed.
Finally, a test data generator can be executed:

gen_test_data "test_sorting"

The test data generator
extracts the testcases from the test theorem
searches ground instances satisfying the constraints (none
in the example)

Resulting in test statements like:

is_sorted (prog [])
is_sorted (prog [3])
is_sorted (prog [6, 8])
is_sorted (prog [0, 10, 1])

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 15

Motivation and Introduction HOL-TestGen and its Workflow

Step V: Generating A Test Script

Finally, a test script or test harness can be generated:

gen_test_script "test_lists.sml" list" prog

The generated test script can be used to test an
implementation, e. g., in SML, C, or Java

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 16

Motivation and Introduction HOL-TestGen and its Workflow

The Complete Test Theory

theory List_test
imports Main begin

consts is_sorted:: "(’a::ord) list⇒bool"
primrec "is_sorted [] = True"

"is_sorted (x#xs) = case xs of
[] ⇒ True

| y#ys⇒((x < y) ∨(x = y))
∧ is_sorted xs"

test_spec "is_sorted (prog (l::(’a list)))"
apply(gen_test_cases prog)

store_test_thm "test_sorting"

gen_test_data "test_sorting"
gen_test_script "test_lists.sml" list" prog

end

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 17

Motivation and Introduction HOL-TestGen and its Workflow

Testing an Implementation

Executing the generated test script may result in:

Test Results:
Test 0 - *** FAILURE: post-condition false, result: [1, 0, 10]
Test 1 - SUCCESS, result: [6, 8]
Test 2 - SUCCESS, result: [3]
Test 3 - SUCCESS, result: []

Summary:
Number successful tests cases: 3 of 4 (ca. 75%)
Number of warnings: 0 of 4 (ca. 0%)
Number of errors: 0 of 4 (ca. 0%)
Number of failures: 1 of 4 (ca. 25%)
Number of fatal errors: 0 of 4 (ca. 0%)

Overall result: failed

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 18

Motivation and Introduction HOL-TestGen and its Workflow

Tool-Demo!

Figure: HOL-TestGen Using Proof General at one Glance

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 19

Outline

1 Motivation and Introduction

2 From Foundations to Pragmatics

3 Advanced Test Scenarios

4 Case Studies

5 Conclusion

From Foundations to Pragmatics Foundations

The Foundations of HOL-TestGen

Basis:

Isabelle/HOL library: 10000 derived rules, . . .
about 500 are organized in larger data-structures used by
Isabelle’s proof procedures, . . .

These Rules were used in advanced proof-procedures for:

Higher-Order Rewriting
Tableaux-based Reasoning —
a standard technique in automated deduction
Arithmetic decision procedures (Coopers Algorithm)

gen_testcases is an automated tactical program using
combination of them.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 21

From Foundations to Pragmatics Foundations

Some Rewrite Rules

Rewriting is a easy to understand deduction paradigm
(similar FP) centered around equality

Arithmetic rules, e. g.,

Suc(x + y) = x + Suc(y)

x + y = y + x

Suc(x) 6= 0

Logic and Set Theory, e. g.,

∀x. (P x ∧ Q x) = (∀x. P x) ∧ (∀x. P x)⋃
x ∈ S. (P x ∪ Q x) = (

⋃
x ∈ S. P x) ∪ (

⋃
x ∈ S. Q x)JA = A′;A =⇒ B = B′K =⇒ (A ∧ B) = (A′ ∧ B′)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 22

From Foundations to Pragmatics Foundations

The Core Tableaux-Calculus

Safe Introduction Rules for logical connectives:

t = t true

P Q

P ∧ Q

[¬Q]
···
P

P ∨ Q

[P]
···
Q

P→ Q

[P]
···

false

¬P

...

Safe Elimination Rules:

false

P

P ∧ Q

[P,Q]
···
R

R

P ∨ Q

[P]
···
R

[Q]
···
R

R

P→ Q

[¬P]
···
R

[Q]
···
R

R

...

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 23

From Foundations to Pragmatics Foundations

The Core Tableaux-Calculus

Safe Introduction Quantifier rules:

P ?x

∃x. P x

∧
x. P x

∀x. P x

Safe Quantifier Elimination ∃x. P x
∧

x.

[P x]
···
Q

Q
Critical Rewrite Rule:

if P then A else B = (P→ A) ∧ (¬P→ B)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 24

From Foundations to Pragmatics Explicit Hypothesis

Explicit Test Hypothesis: The Concept

What to do with infinite data-strucutures?

What is the connection between test-cases and test
statements and the test theorems?

Two problems, one answer: Introducing test hypothesis
“on the fly”:

THYP : bool⇒bool
THYP(x) ≡x

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 25

From Foundations to Pragmatics Explicit Hypothesis

Taming Infinity I: Regularity Hypothesis

What to do with infinite data-strucutures of type τ?
Conceptually, we split the set of all data of type τ into

{x :: τ | |x| < k} ∪ {x :: τ | |x| ≥ k}

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 26

From Foundations to Pragmatics Explicit Hypothesis

Taming Infinity I: Motivation

Consider the first set {X :: τ | |x| < k}
for the case τ = α list, k = 2,3,4.
These sets can be presented as:

1) |x::τ |<2 = (x = []) ∨(∃ a. x = [a])
2) |x::τ |<3 = (x = []) ∨(∃ a. x = [a])

∨ (∃ a b. x = [a,b])
3) |x::τ |<4 = (x = []) ∨(∃ a. x = [a])

∨ (∃ a b. x = [a,b]) ∨(∃ a b c. x = [a,b,c])

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 27

From Foundations to Pragmatics Explicit Hypothesis

Taming Infinity I: Data Separation Rules

This motivates the (derived) data-separation rule:

(τ = α list, k = 3):[
x = []

]
···
P

∧
a.

[
x = [a]

]
···
P

∧
a b.

[
x = [a,b]

]
···
P THYP M

P

Here, M is an abbreviation for:

∀ x. k < |x| −→P x

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 28

From Foundations to Pragmatics Explicit Hypothesis

Taming Infinity II: Uniformity Hypothesis

What is the connection between test cases and test
statements and the test theorems?

Well, the “uniformity hypothesis”:

Once the program behaves correct for one test case,
it behaves correct for all test cases ...

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 29

From Foundations to Pragmatics Explicit Hypothesis

Taming Infinity II: Uniformity Hypothesis

Using the uniformity hypothesis, a test case:

n) [[C1 x; ...; Cm x]] =⇒TS x

is transformed into:

n) [[C1 ?x; ...; Cm ?x]] =⇒TS ?x
n+1) THYP((∃ x. C1 x ... Cm x −→TS x)

−→(∀ x. C1 x ... Cm x −→TS x))

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 30

From Foundations to Pragmatics Putting the Pieces Together

Testcase Generation by NF Computations

Test-theorem is computed out of the test specification by

a heuristicts applying Data-Separation Theorems

a rewriting normal-form computation

a tableaux-reasoning normal-form computation

shifting variables referring to the program under test prog
test into the conclusion, e.g.:

[[¬(prog x = c); ¬(prog x = d)]]=⇒A

is transformed equivalently into

[[¬A]] =⇒(prog x = c) ∨(prog x = d)

as a final step, all resulting clauses were normalized by
applying uniformity hypothesis to each free variable.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 31

From Foundations to Pragmatics Putting the Pieces Together

Testcase Generation: An Example

theory TestPrimRec
imports Main
begin
primrec

x mem [] = False
x mem (y#S) = if y = x

then True
else x mem S

test_spec:
"x mem S =⇒prog x S"

apply(gen_testcase 0 0)

1) prog x [x]
2)
∧

b. prog x [x,b]
3)
∧

a. a6=x=⇒prog x [a,x]
4) THYP(3 ≤size (S)

−→∀ x. x mem S
−→prog x S)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 32

From Foundations to Pragmatics Putting the Pieces Together

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 33

From Foundations to Pragmatics Putting the Pieces Together

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

is transformed via data-separation lemma to:

1. S=[] =⇒x mem S −→prog x S

2.
∧

a. S=[a] =⇒x mem S −→prog x S

3.
∧

a b. S=[a,b] =⇒x mem S −→prog x S

4. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 33

From Foundations to Pragmatics Putting the Pieces Together

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

canonization leads to:

1. x mem [] =⇒prog x []

2.
∧

a. x mem [a] =⇒prog x [a]

3.
∧

a b. x mem [a,b] =⇒prog x [a,b]

4. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 33

From Foundations to Pragmatics Putting the Pieces Together

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

which is reduced via the equation for mem:

1. false =⇒prog x []

2.
∧

a. if a = x then True
else x mem [] =⇒prog x [a]

3.
∧

a b. if a = x then True
else x mem [b] =⇒prog x [a,b]

4. THYP(3 ≤|S| −→x mem S −→prog x S)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 33

From Foundations to Pragmatics Putting the Pieces Together

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

erasure for unsatisfyable constraints and rewriting conditionals
yields:

2.
∧

a. a = x ∨(a 6=x ∧false)
=⇒prog x [a]

3.
∧

a b. a = x ∨(a 6=x ∧x mem [b]) =⇒prog x [a,b]

4. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 33

From Foundations to Pragmatics Putting the Pieces Together

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

. . . which is further reduced by tableaux rules and canconiza-
tion to:

2.
∧

a. prog a [a]

3.
∧

a b. a = x =⇒prog x [a,b]
3’.

∧
a b. [[a6=x; x mem [b]]]=⇒prog x [a,b]

4. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 33

From Foundations to Pragmatics Putting the Pieces Together

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

. . . which is reduced by canonization and rewriting of mem to:

2.
∧

a. prog x [x]

3.
∧

a b. prog x [x,b]
3’.

∧
a b. a6=x =⇒prog x [a,x]

4. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 33

From Foundations to Pragmatics Putting the Pieces Together

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

. . . as a final step, uniformity is expressed:

1. prog ?x1 [?x1]
2. prog ?x2 [?x2,?b2]
3. ?a36=?x1 =⇒prog ?x3 [?a3,?x3]
4. THYP(∃ x.prog x [x] −→prog x [x]

...
7. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 33

From Foundations to Pragmatics Summing Up

Summing up:

The test-theorem for a test specification TS has the general
form:

JTC1; . . . ; TCn; THYP H1; . . . ; THYP HmK =⇒ TS

where the test cases TCi have the form:

JC1x; . . . ;Cmx; THYP H1; . . . ; THYP HmK =⇒ P x (prog x)

and where the test-hypothesis are either uniformity or
regularity hypothethises.
The Ci in a test case were also called constraints of the
testcase.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 34

From Foundations to Pragmatics Summing Up

Summing up:

The overall meaning of the test-theorem is:

if the program passes the tests for all test-cases,
and if the test hypothesis are valid for PUT,
then PUT complies to testspecification TS.

Thus, the test-theorem establishes a formal link
between test and verification !!!

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 35

From Foundations to Pragmatics A Quick Glance on Test Data Generation

Generating Test Data

Test data generation is now a constraint satisfaction problem.

We eliminate the meta variables ?x , ?y, . . . by
constructing values (“ground instances”) satisfying the
constraints. This is done by:

random testing (for a smaller input space!!!)
arithmetic decision procedures
reusing pre-compiled abstract test cases
. . .
interactive simplify and check, if constraints went away!

Output: Sets of instantiated test theorems
(to be converted into Test Driver Code)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 36

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Outline

1 Motivation and Introduction

2 From Foundations to Pragmatics

3 Advanced Test Scenarios

4 Case Studies

5 Conclusion

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 37

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Tuning the Workflow by Interactive Proof

Observations:

Test-theorem generations is fairly easy ...

Test-data generation is fairly hard ...
(it does not really matter if you use random solving
or just plain enumeration !!!)

Both are scalable processes . . .
(via parameters like depth, iterations, ...)

There are bad and less bad forms of test-theorems !!!

Recall: Test-theorem and test-data generation are normal
form computations:
=⇒ More Rules, better results . . .

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 38

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

What makes a Test-case “Bad”

redundancy.

many unsatisfiable constraints.

many constraints with unclear logical status.

constraints that are difficult to solve.
(like arithmetics).

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 39

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Case Studies: Red-black Trees

Motivation

Test a non-trivial and widely-used data structure.

part of the SML standard library

widely used internally in the sml/NJ compiler, e. g., for
providing efficient implementation for Sets, Bags, . . . ;

very hard to generate (balanced) instances randomly

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 40

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Modeling Red-black Trees I

Red-Black Trees:

Red Invariant: each red node has a
black parent.

Black Invariant: each path from the
root to an empty node
(leaf) has the same
number of black nodes.

2

5

6

8

datatype
color = R | B
tree = E | T color (α tree) (β::ord item) (α tree)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 41

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Modeling Red-black Trees II

Red-Black Trees: Test Theory

consts
redinv :: tree⇒bool
blackinv :: tree⇒bool

recdef blackinv measure (λ t. (size t))
blackinv E = True
blackinv (T color a y b) =

((blackinv a) ∧(blackinv b)
∧ ((max B (height a)) = (max B (height b))))

recdev redinv measure ...

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 42

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: Test Specification

Red-Black Trees: Test Specification

test_spec:
"isord t ∧ redinv t ∧blackinv t
∧ isin (y::int) t
−→
(blackinv(prog(y,t)))"

where prog is the program under test (e. g., delete).

Using the standard-workflows results, among others:

RSF −→blackinv (prog (100, T B E 7 E))
blackinv (prog (−91, T B (T R E −91 E) 5 E))

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 43

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: A first Summary

Observation:

Guessing (i. e., random-solving) valid red-black trees is difficult.

On the one hand:

random-solving is nearly impossible for solutions which are
“difficult” to find
only a small fraction of trees with depth k are balanced

On the other hand:

we can quite easily construct valid red-black trees
interactively.

Question:
Can we improve the test-data generation by using our
knowledge about red-black trees?

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 44

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: A first Summary

Observation:

Guessing (i. e., random-solving) valid red-black trees is difficult.

On the one hand:

random-solving is nearly impossible for solutions which are
“difficult” to find
only a small fraction of trees with depth k are balanced

On the other hand:

we can quite easily construct valid red-black trees
interactively.

Question:
Can we improve the test-data generation by using our
knowledge about red-black trees?

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 44

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: Hierarchical Testing I

Idea:

Characterize valid instances of red-black tree in more detail and
use this knowledge to guide the test data generation.

First attempt:
enumerate the height of some trees without black nodes

lemma maxB_0_1:
"max_B_height (E:: int tree) = 0"

lemma maxB_0_5:
"max_B_height (T R (T R E 2 E) (5::int) (T R E 7 E)) = 0"

But this is tedious . . .

and error-prone

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 45

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: Hierarchical Testing I

Idea:

Characterize valid instances of red-black tree in more detail and
use this knowledge to guide the test data generation.

First attempt:
enumerate the height of some trees without black nodes

lemma maxB_0_1:
"max_B_height (E:: int tree) = 0"

lemma maxB_0_5:
"max_B_height (T R (T R E 2 E) (5::int) (T R E 7 E)) = 0"

But this is tedious . . . and error-prone

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 45

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

How to Improve Test-Theorems

New simplification rule establishing unsatisfiability.

New rules establishing equational constraints for
variables.

(max_B_height (T x t1 val t2) = 0) =⇒(x = R)

(max_B_height x = 0) =
(x = E ∨∃ a y b. x = T R a y b ∧

max(max_B_height a)
(max_B_height b) = 0)

Many rules are domain specific —
few hope that automation pays really off.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 46

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Improvement Slots

logical massage of test-theorem.

in-situ improvements:
add new rules into the context before gen_test_cases.

post-hoc logical massage of test-theorem.

in-situ improvements:
add new rules into the context before gen_test_data.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 47

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: sml/NJ Implementation

2

5

6

8

(a) pre-state

Figure: Test Data for Deleting a Node in a Red-Black Tree

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 48

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: sml/NJ Implementation

2

5 8

6

(b) pre-state: delete “8”

Figure: Test Data for Deleting a Node in a Red-Black Tree

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 48

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: sml/NJ Implementation

2

5 8

6

(b) pre-state: delete “8”

6

5

2

(c) correct result

Figure: Test Data for Deleting a Node in a Red-Black Tree

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 48

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: sml/NJ Implementation

2

5 8

6

(b) pre-state: delete “8”

6

5

2

(c) correct result

5

2

6

(d) result of sml/NJ

Figure: Test Data for Deleting a Node in a Red-Black Tree

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 48

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: Summary

Statistics: 348 test cases were generated
(within 2 minutes)

One error found: crucial violation against
red/black-invariants

Red-black-trees degenerate to linked list
(insert/search, etc. only in linear time)

Not found within 12 years

Reproduced meanwhile by random test tool

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 49

Advanced Test Scenarios Sequence Testing

Motivation: Sequence Test

So far, we have used HOL-TestGen only for test
specifications of the form:

pre x→ post x (prog x)

This seems to limit the HOL-TestGen approach to
UNIT-tests.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 50

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

No Non-determinism.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 51

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

post must indeed be executable; however, the pre-
post style of specification represents a relational
description of prog.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 51

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

post must indeed be executable; however, the pre-
post style of specification represents a relational
description of prog.

No Automata - No Tests for Sequential Behaviour.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 51

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

post must indeed be executable; however, the pre-
post style of specification represents a relational
description of prog.

HOL has lists and recursive predicates; thus sets of
lists, thus languages . . .

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 51

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

post must indeed be executable; however, the pre-
post style of specification represents a relational
description of prog.

HOL has lists and recursive predicates; thus sets of
lists, thus languages . . .

No possibility to describe reactive tests.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 51

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

post must indeed be executable; however, the pre-
post style of specification represents a relational
description of prog.

HOL has lists and recursive predicates; thus sets of
lists, thus languages . . .

HOL has Monads. And therefore means for IO-
specifications.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 51

Advanced Test Scenarios Sequence Testing

Representing Sequence Test

Test-Specification Pattern:

accept trace→P(Mfold trace σ0 prog)

where

Mfold [] σ = Some σ
MFold (input::R) = case prog(input, σ) of

None ⇒None
| Some σ‘⇒Mfold R σ’ prog

Can this be used for reactive tests?

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 52

Advanced Test Scenarios Sequence Testing

Example: A Reactive System I

A toy client-server system:

stop

ack

ack

req?X send?D!Yport!Y

a channel is requested within a bound X, a channel Y is
chosen by the server, the client communicates along this
channel . . .

Observation:

X and Y are only known at runtime!

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 53

Advanced Test Scenarios Sequence Testing

Example: A Reactive System I

A toy client-server system:

req?X→ port!Y[Y < X]→
(recN. send!D.Y → ack→ N

� stop→ ack→ SKIP)

a channel is requested within a bound X, a channel Y is
chosen by the server, the client communicates along this
channel . . .

Observation:

X and Y are only known at runtime!

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 53

Advanced Test Scenarios Sequence Testing

Example: A Reactive System I

A toy client-server system:

req?X→ port!Y[Y < X]→
(recN. send!D.Y → ack→ N

� stop→ ack→ SKIP)

a channel is requested within a bound X, a channel Y is
chosen by the server, the client communicates along this
channel . . .
Observation:

X and Y are only known at runtime!

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 53

Advanced Test Scenarios Sequence Testing

Example: A Reactive System II

Observation:

X and Y are only known at runtime!

Mfold is a program that manages a state at test run time.

use an environment that keeps track of the instances of X
and Y?

Infrastructure: An observer maps
abstract events (reqX, port Y, ...) in traces
to
concrete events (req 4, port 2, ...) in runs!

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 54

Advanced Test Scenarios Sequence Testing

Example: A Reactive System |||

Infrastructure: the observer

observer rebind substitute postcond ioprog ≡
(λ input. (λ (σ, σ’). let input’= substitute σinput in

case ioprog input’ σ’ of
None⇒None (* ioprog failure − eg. timeout ... *)

| Some (output, σ’’’)⇒let σ’’ = rebind σoutput in
(if postcond (σ’’,σ’’’) input’ output
then Some(σ’’, σ’’’)
else None (* postcond failure *))))"

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 55

Advanced Test Scenarios Sequence Testing

Example: A Reactive Test IV

Reactive Test-Specification Pattern:

accept trace→
P(Mfold traceσ0 (observer rebind subst postcond ioprog))

for reactive systems!

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 56

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Motivation

So far, we have used HOL-TestGen only for test
specifications of the form:

pre x→ post x (prog x)

We have seen, this does not exclude to model reactive
sequence test in HOL-TestGen.

However, this seems still exclude the HOL-TestGen
approach from program-based testing approaches (such
as JavaPathfinder-SE or Pexx).

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 57

Advanced Test Scenarios Program-based Testing by Symbolic Execution

How to Realize White-box-Tests in

HOL-TestGen?

Fact: HOL is a powerful logical framework used to embed
all sorts of specification and programming languages.

Thus, we can embed the language of our choice in
HOL-TestGen...

and derive the necessary rules for symbolic execution
based tests ...

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 58

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The Master-Plan for White-box-Tests in

HOL-TestGen?

We embed an imperative core-language — called IMP —
into HOL-TestGen, by defining its syntax and semantics

We add a specification mechanism for IMP: Hoare-Triples

we derive rules for symbolic evaluation and
loop-unfolding.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 59

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Syntax

The (abstract) IMP syntax is defined in Com.thy.

Com = Main +
typedecl loc
types
val = nat (*arb.*)
state = loc⇒val
aexp = state⇒val
bexp = state⇒bool

datatype com =
SKIP
| ":==" loc aexp (infixl 60)
| Semi com com ("_ ; _"[60, 60]10)
| Cond bexp com com

(" IF _ THEN _ ELSE _"60)
| While bexp com ("WHILE _ DO_"60)

The type loc stands for locations. Note that expressions are
represented as HOL-functions depending on state. The
datatype com stands for commands (command sequences).

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 60

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Example: The Integer Square-Root Program

tm :== λs. 1;
sum :== λs. 1;
i :== λs. 0;
WHILE λs. (s sum) <= (s a) DO

(i :== λs. (s i) + 1;
tm :== λs. (s tm) + 2;
sum :== λs. (s tm) + (s sum))

How does this program work?
Note: There is the implicit assumption, that tm, sum and i are
distinct locations, i.e. they are not aliases from each other !

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 61

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics I: (Natural Semantics

Natural semantics going back to Plotkin

idea: programs relates states.

state -a :== b
state′ �

���
���

�:
WHILE . . .

XXXXXXXXz
SKIP

state′′

state′′′

consts evalc :: (com ×state ×state) set

translations "〈c,s〉 −→c s’ " ≡ "(c,s,s’) ∈evalc"

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 62

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics I: (Natural Semantics

Natural semantics going back to Plotkin

idea: programs relates states.

state -a :== b
state′ �

���
���

�:
WHILE . . .

XXXXXXXXz
SKIP

state′′

state′′′

consts evalc :: (com ×state ×state) set

translations "〈c,s〉 −→c s’ " ≡ "(c,s,s’) ∈evalc"

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 62

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics I: (Natural Semantics

Natural semantics going back to Plotkin

idea: programs relates states.

state -a :== b
state′ �

���
���

�:
WHILE . . .

XXXXXXXXz
SKIP

state′′

state′′′

consts evalc :: (com ×state ×state) set

translations "〈c,s〉 −→c s’ " ≡ "(c,s,s’) ∈evalc"

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 62

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics I: (Natural Semantics

Natural semantics going back to Plotkin

idea: programs relates states.

state -a :== b
state′ �

���
���

�:
WHILE . . .

XXXXXXXXz
SKIP

state′′

state′′′

consts evalc :: (com ×state ×state) set

translations "〈c,s〉 −→c s’ " ≡ "(c,s,s’) ∈evalc"

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 62

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The transition relation of natural semantics is inductively
defined.

This means intuitively: The evaluation steps defined by the
following rules are the only possible steps.

Let’s go . . .

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 63

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The transition relation of natural semantics is inductively
defined.

This means intuitively: The evaluation steps defined by the
following rules are the only possible steps.

Let’s go . . .

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 63

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The transition relation of natural semantics is inductively
defined.

This means intuitively: The evaluation steps defined by the
following rules are the only possible steps.

Let’s go . . .

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 63

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The natural semantics as inductive definition:

inductive evalc
intrs
Skip: 〈SKIP,s〉 −→c s

Assign: 〈x :== a,s〉 −→c s[x 7→a s]

Note that s[x 7→a s] is an abbreviation for update s x (a s),
where

update s x v ≡λy. if y=x then v else s y

Note that a is of type aexp or bexp.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 64

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The natural semantics as inductive definition:

inductive evalc
intrs
Skip: 〈SKIP,s〉 −→c s

Assign: 〈x :== a,s〉 −→c s[x 7→a s]

Note that s[x 7→a s] is an abbreviation for update s x (a s),
where

update s x v ≡λy. if y=x then v else s y

Note that a is of type aexp or bexp.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 64

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The natural semantics as inductive definition:

inductive evalc
intrs
Skip: 〈SKIP,s〉 −→c s

Assign: 〈x :== a,s〉 −→c s[x 7→a s]

Note that s[x 7→a s] is an abbreviation for update s x (a s),
where

update s x v ≡λy. if y=x then v else s y

Note that a is of type aexp or bexp.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 64

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Excursion: A minimal memory model:

(s[x 7→E]) x = E
x 6=y =⇒ (s[x 7→E]) y = s y

This small memory theory contains the typical rules for
updating and memory-access. Note that this rewrite system is
in fact executable!

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 65

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The semantics for the sequential composition of statements
can be described as follows:

Semi: [[〈c,s〉 −→c s’; 〈c’,s’〉 −→c s’’]] =⇒〈c;c’, s〉 −→c s’’

Rationale of natural semantics:

if you can “jump” via c from s to s’, . . .

and if you can “jump” via c’ from s’ to s’’ . . .

then this means that you can “jump” via the composition
c;c’ from c to c’’.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 66

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The semantics for the sequential composition of statements
can be described as follows:

Semi: [[〈c,s〉 −→c s’; 〈c’,s’〉 −→c s’’]] =⇒〈c;c’, s〉 −→c s’’

Rationale of natural semantics:

if you can “jump” via c from s to s’, . . .

and if you can “jump” via c’ from s’ to s’’ . . .

then this means that you can “jump” via the composition
c;c’ from c to c’’.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 66

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The semantics for the sequential composition of statements
can be described as follows:

Semi: [[〈c,s〉 −→c s’; 〈c’,s’〉 −→c s’’]] =⇒〈c;c’, s〉 −→c s’’

Rationale of natural semantics:

if you can “jump” via c from s to s’, . . .

and if you can “jump” via c’ from s’ to s’’ . . .

then this means that you can “jump” via the composition
c;c’ from c to c’’.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 66

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The semantics for the sequential composition of statements
can be described as follows:

Semi: [[〈c,s〉 −→c s’; 〈c’,s’〉 −→c s’’]] =⇒〈c;c’, s〉 −→c s’’

Rationale of natural semantics:

if you can “jump” via c from s to s’, . . .

and if you can “jump” via c’ from s’ to s’’ . . .

then this means that you can “jump” via the composition
c;c’ from c to c’’.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 66

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The other constructs of the language are treated analogously:

IfTrue: [[b s; 〈c,s〉 −→c s’]]

=⇒〈 IF b THEN c ELSE c’, s〉 −→c s’

IfFalse: [[¬b s; 〈c’,s〉 −→c s’]]

=⇒〈 IF b THEN c ELSE c’, s〉 −→c s’

WhileFalse: [[¬b s]]

=⇒〈WHILE b DO c, s〉 −→c s

WhileTrue: [[b s; 〈c,s〉 −→c s’;〈WHILE b DO c,s’〉 −→c s’’]]

=⇒〈WHILE b DO c, s〉 −→c s’’

Note that for non-terminating programs no final state can be
derived !

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 67

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics II: (Transition Semantics)

The transition semantics is inspired by abstract machines.

idea: programs relate “configurations”.

a :== b;X, state - X, state′ ��
���

��:

XXXXXXXz X′′′, state′′′

X′′, state′′

consts evalc1 :: ((com ×state) ×(com ×state)) set

translations "cs −1−> cs’" ≡"(cs,cs’) ∈evalc1"

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 68

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics II: (Transition Semantics)

The transition semantics is inspired by abstract machines.

idea: programs relate “configurations”.

a :== b;X, state - X, state′ ��
���

��:

XXXXXXXz X′′′, state′′′

X′′, state′′

consts evalc1 :: ((com ×state) ×(com ×state)) set

translations "cs −1−> cs’" ≡"(cs,cs’) ∈evalc1"

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 68

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics II: (Transition Semantics)

The transition semantics is inspired by abstract machines.

idea: programs relate “configurations”.

a :== b;X, state - X, state′ ��
���

��:

XXXXXXXz X′′′, state′′′

X′′, state′′

consts evalc1 :: ((com ×state) ×(com ×state)) set

translations "cs −1−> cs’" ≡"(cs,cs’) ∈evalc1"

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 68

Advanced Test Scenarios Program-based Testing by Symbolic Execution

inductive evalc1
intro

Assign: (x:==a,s) −1−> (SKIP, s[x 7→a s])
Semi1: (SKIP;c,s) −1−> (c,s)
Semi2: (c,s) −1−> (c’’,s’)

=⇒ (c;c’,s) −1−> (c’’;c’,s’)

Rationale of Transition Semantics:

the first component in a configuration represents a stack
of statements yet to be executed . . .

this stack can also be seen as a program counter . . .

transition semantics is close to an abstract machine.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 69

Advanced Test Scenarios Program-based Testing by Symbolic Execution

inductive evalc1
intro

Assign: (x:==a,s) −1−> (SKIP, s[x 7→a s])
Semi1: (SKIP;c,s) −1−> (c,s)
Semi2: (c,s) −1−> (c’’,s’)

=⇒ (c;c’,s) −1−> (c’’;c’,s’)

Rationale of Transition Semantics:

the first component in a configuration represents a stack
of statements yet to be executed . . .

this stack can also be seen as a program counter . . .

transition semantics is close to an abstract machine.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 69

Advanced Test Scenarios Program-based Testing by Symbolic Execution

inductive evalc1
intro

Assign: (x:==a,s) −1−> (SKIP, s[x 7→a s])
Semi1: (SKIP;c,s) −1−> (c,s)
Semi2: (c,s) −1−> (c’’,s’)

=⇒ (c;c’,s) −1−> (c’’;c’,s’)

Rationale of Transition Semantics:

the first component in a configuration represents a stack
of statements yet to be executed . . .

this stack can also be seen as a program counter . . .

transition semantics is close to an abstract machine.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 69

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IfTrue:
b s =⇒(IF b THEN c’ ELSE c ’’, s) −1−> (c’,s)

IfFalse:
¬b s =⇒(IF b THEN c’ ELSE c ’’, s) −1−> (c’’,s)

WhileFalse:
¬b s =⇒(WHILE b DO c,s) −1−> (SKIP,s)

WhileTrue:
b s =⇒(WHILE b DO c,s) −1−> (c;WHILE b DOc,s)

A non-terminating loop always leads to successor
configurations . . .

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 70

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IfTrue:
b s =⇒(IF b THEN c’ ELSE c ’’, s) −1−> (c’,s)

IfFalse:
¬b s =⇒(IF b THEN c’ ELSE c ’’, s) −1−> (c’’,s)

WhileFalse:
¬b s =⇒(WHILE b DO c,s) −1−> (SKIP,s)

WhileTrue:
b s =⇒(WHILE b DO c,s) −1−> (c;WHILE b DOc,s)

A non-terminating loop always leads to successor
configurations . . .

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 70

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics III: (Denotational Semantics)

Idea:

Associate “the meaning of the program” to a statement
directly by a semantic domain. Explain loops as fixpoint (or
limit) construction on this semantic domain.
As semantic domain we choose the state relation:

types com_den = (state ×state) set

and declare the semantic function:

consts C :: com⇒com_den

The semantic function C is defined recursively over the syntax.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 71

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics III: (Denotational Semantics)

Idea:

Associate “the meaning of the program” to a statement
directly by a semantic domain. Explain loops as fixpoint (or
limit) construction on this semantic domain.

As semantic domain we choose the state relation:

types com_den = (state ×state) set

and declare the semantic function:

consts C :: com⇒com_den

The semantic function C is defined recursively over the syntax.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 71

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics III: (Denotational Semantics)

Idea:

Associate “the meaning of the program” to a statement
directly by a semantic domain. Explain loops as fixpoint (or
limit) construction on this semantic domain.
As semantic domain we choose the state relation:

types com_den = (state ×state) set

and declare the semantic function:

consts C :: com⇒com_den

The semantic function C is defined recursively over the syntax.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 71

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics III: (Denotational Semantics)

Idea:

Associate “the meaning of the program” to a statement
directly by a semantic domain. Explain loops as fixpoint (or
limit) construction on this semantic domain.
As semantic domain we choose the state relation:

types com_den = (state ×state) set

and declare the semantic function:

consts C :: com⇒com_den

The semantic function C is defined recursively over the syntax.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 71

Advanced Test Scenarios Program-based Testing by Symbolic Execution

primrec
C(SKIP) = Id (* ≡identity relation *)
C(x :== a) = {(s,t). t = s[x 7→ a s]}
C(c ; c’) = C(c’) O C(c) (* ≡seq. composition *)
C(IF b THEN c’ ELSE c’’) =

{(s,t). (s,t) ∈C(c’) ∧b(s)} ∪
{(s,t). (s,t) ∈C(c’’) ∧¬b(s)}"

C(WHILE b DO c) = lfp (Γ b (C(c)))"

where:

Γ b c ≡(λϕ. {(s,t). (s,t) ∈ (ϕ O c) ∧b(s)} ∪
{(s,t). s=t ∧¬b(s)})

and where the least-fixpoint-operator lfp F corresponds in this
special case to: ⋃

n∈N
Fn

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 72

Advanced Test Scenarios Program-based Testing by Symbolic Execution

primrec
C(SKIP) = Id (* ≡identity relation *)
C(x :== a) = {(s,t). t = s[x 7→ a s]}
C(c ; c’) = C(c’) O C(c) (* ≡seq. composition *)
C(IF b THEN c’ ELSE c’’) =

{(s,t). (s,t) ∈C(c’) ∧b(s)} ∪
{(s,t). (s,t) ∈C(c’’) ∧¬b(s)}"

C(WHILE b DO c) = lfp (Γ b (C(c)))"

where:

Γ b c ≡(λϕ. {(s,t). (s,t) ∈ (ϕ O c) ∧b(s)} ∪
{(s,t). s=t ∧¬b(s)})

and where the least-fixpoint-operator lfp F corresponds in this
special case to: ⋃

n∈N
Fn

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 72

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics:Theorems I

Theorem: Natural and Transition Semantics Equivalent

(c, s) −*−> (SKIP, t) = (〈c,s〉 −→c t)

where cs −*−> cs’ ≡(cs,cs’)∈evalc1∗, i.e. the new arrow
denotes the transitive closure over old one.

Theorem: Denotational and Natural Semantics
Equivalent

((s, t) ∈C c) = (〈c,s〉 −→c t)

i.e. all three semantics are closely related !

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 73

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics:Theorems I

Theorem: Natural and Transition Semantics Equivalent

(c, s) −*−> (SKIP, t) = (〈c,s〉 −→c t)

where cs −*−> cs’ ≡(cs,cs’)∈evalc1∗, i.e. the new arrow
denotes the transitive closure over old one.

Theorem: Denotational and Natural Semantics
Equivalent

((s, t) ∈C c) = (〈c,s〉 −→c t)

i.e. all three semantics are closely related !

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 73

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics:Theorems I

Theorem: Natural and Transition Semantics Equivalent

(c, s) −*−> (SKIP, t) = (〈c,s〉 −→c t)

where cs −*−> cs’ ≡(cs,cs’)∈evalc1∗, i.e. the new arrow
denotes the transitive closure over old one.

Theorem: Denotational and Natural Semantics
Equivalent

((s, t) ∈C c) = (〈c,s〉 −→c t)

i.e. all three semantics are closely related !

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 73

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics:Theorems II

Theorem: Natural Semantics can be evaluated
equationally !!!

〈SKIP,s〉 −→c s’ = (s’ = s)

〈x :== a,s〉 −→c s’ = (s’ = s[x 7→a s])

〈c; c’, s〉 −→c s’ = (∃ s’’. 〈c,s〉 −→c s’’ ∧〈c’,s’’〉 −→c s’)

〈 IF b THEN c ELSE c’, s〉 −→c s’ = (b s ∧〈c,s〉 −→c s’) ∨
(¬b s ∧〈c’,s〉 −→c s’)

Note: This is the key for evaluating a program symbolically !!!

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 74

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Example: “a:==2;b:==2*a”

〈a:==λs. 2; b:==λs. 2 * (s a),s〉 −→c s’

≡ (∃ s’’. 〈a:==λs. 2,s〉 −→c s’’ ∧〈b:==λs. 2 * (s a),s’’〉 −→c s’)

≡ (∃ s’’. s’’ = s[a7→(λs. 2) s] ∧s’ = s’’[b 7→(λs. 2 * (s a)) s’’])
≡ (∃ s’’. s’’ = s[a7→ 2] ∧s’ = s’’[b 7→ 2 * (s’’ a)])
≡ s’ = s[a7→ 2][b 7→ 2 * (s[a 7→2] a)]
≡ s’ = s[a7→ 2][b 7→ 2 * 2]
≡ s’ = s[a7→ 2][b 7→ 4]

Note:

1 The λ-notation is perhaps a bit irritating, but helps to get
the nitty-gritty details of substitution right.

2 The forth step is correct due to the “one-point-rule”
(∃x. x = e ∧ P(x)) = P(e).

3 This does not work for the loop and for recursion...

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 75

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics:Theorems III

Denotational semantics makes it easy to prove facts like:

C (WHILE b DO c) = C (IF b THEN c; WHILE b DO c ELSE SKIP)
C (SKIP ; c) = C(c)
C (c; SKIP) = C(c)
C ((c ; d); e) = C(c;(d;e))
C ((IF b THEN c ELSE d); e) = C(IF b THEN c ; e ELSE d ; e)

etc.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 76

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Program Annotations: Assertions revisited.

For our scenario, we need a mechanism to combine programs
with their specifications.
The Standard: Hoare-Tripel with Pre- and Post-Conditions a
special form of assertions.

types assn = state⇒bool
consts valid :: (assn ×com ×assn)⇒bool ("|= {_} _ {_}")

defs
|= {P}c{Q} ≡∀ s. ∀ t. (s,t) ∈C(c) −→P s −→ Q t"

Note that this reflects partial correctnes; for a non-terminating
program c, i.e. (s,t) /∈ C(c), a Hoare-Triple does not enforce
anything as post-condition !

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 77

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Finally: Symbolic Evaluation.

For programs without loop, we have already anything together
for symbolic evaluation:

∀ s s’. 〈c,s〉 −→c s’ ∧ P s → Q s’

=⇒|= {P}c{Q}

or in more formal, natural-deduction notation:[〈c, s〉 →c s
′, P s

]
s,s′···

Q s′

|= {P} c {Q}
Applied in backwards-inference, this rule generates the
constraints for the states that were amenable to equational
evaluation rules shown before.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 78

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Example: “|= {0 ≤ x}a:==x;b:==2*a{0 ≤ b}”
|= {λs. 0 ≤s x} a:==λs. s x; b:==λs. 2 * (s a) {λs. 0 ≤s b}

⇐= s’ = s[a7→ s x][b 7→ 2 * (s[a 7→s x] a)] ∧0 ≤s x −→0 ≤s’ b
≡ s’ = s[a7→ s x][b 7→ 2 * (s x)] ∧“PRE s’’ −→“POST s’ ’’
≡ “PRE s’’ −→ “POST (s[a7→ s x][b7→ 2 * (s x)]) ’’

Note:

Note: the logical constaint
s’ = s[a7→s x][b7→2 * s x] ∧0 ≤s x consists of the

constraint that functionally relate pre-state s to post-state
s’ and the Path-Condition (in this case just “PRE s’’).
This also works for conditionals ... Revise !
The implication is actually the core validation problem: It
means that for a certain path, we search for the solution
of a path condition that validates the post-condition. We
can decide to 1) keep it as test hypothesis, 2) test k
witnesses and add a uniformity hypothesis, or 3) verify it.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 79

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Validation of Post-Conditions for a Given Path:

Ad 1 : Add THYP(PRE s→ POST(s[a 7→ s x][b 7→ 2 ∗ (s x)]))
(is: THYP(0 ≤ s x→ 0 ≤ 2 ∗ s x)) as test hypothesis.

Ad 2 : Find witness to ∃s.0 ≤ s x, run a test on this witness
(does it establish the post-condition?) and add the
uniformity-hypothesis:
THYP(∃s. 0 ≤ s x→ 0 ≤ 2∗s x→ ∀s. 0 ≤ s x→ 0 ≤ 2∗s x).

Ad 3 : Verify the implication, which is in this case easy.

Option 1 can be used to model weaker coverage criteria than
all statements and k loops, option 2 can be significantly easier
to show than option 3, but as the latter shows, for simple
formulas, testing is not necessarily the best solution.

Control-heuristics necessary.
B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 80

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

We have found a symbolic execution method that works for
programs with assignments, SKIP’s, sequentials, and
conditionals.

What to do with loops ???

Answer: Unfolding to a certain depth.

In the sequel, we define an unfolding function, prove it
semantically correct with respect to C, and apply the
procedure above again.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 81

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

We have found a symbolic execution method that works for
programs with assignments, SKIP’s, sequentials, and
conditionals.

What to do with loops ???

Answer: Unfolding to a certain depth.

In the sequel, we define an unfolding function, prove it
semantically correct with respect to C, and apply the
procedure above again.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 81

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

We have found a symbolic execution method that works for
programs with assignments, SKIP’s, sequentials, and
conditionals.

What to do with loops ???

Answer: Unfolding to a certain depth.

In the sequel, we define an unfolding function, prove it
semantically correct with respect to C, and apply the
procedure above again.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 81

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

We have found a symbolic execution method that works for
programs with assignments, SKIP’s, sequentials, and
conditionals.

What to do with loops ???

Answer: Unfolding to a certain depth.

In the sequel, we define an unfolding function, prove it
semantically correct with respect to C, and apply the
procedure above again.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 81

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

consts unwind :: "nat ×com⇒com"
recdef unwind "less_than <*lex*> measure(λ s. size s)"
"unwind(n, SKIP) = SKIP"
"unwind(n, a :== E) = (a :== E)"
"unwind(n, IF b THEN c ELSE d) = IF b THEN unwind(n,c) ELSEunwind(n,d)"
"unwind(n, WHILEb DO c) =

if 0 < n
then IF b THEN unwind(n,c)@@unwind(n− 1,WHILE b DOc) ELSESKIP
else WHILE b DO unwind(0, c))"

"unwind(n, SKIP; c) = unwind(n, c)"
"unwind(n, c ; SKIP) = unwind(n, c)"
"unwind(n, (IF b THEN c ELSE d) ; e) =

(IF b THEN (unwind(n,c;e)) ELSE(unwind(n,d;e)))"
"unwind(n, (c ; d); e) = (unwind(n, c;d))@@(unwind(n,e))"
"unwind(n, c ; d) = (unwind(n, c))@@(unwind(n, d))"

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 82

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

where the primitive recursive auxiliary function c@@d
appends a command d to the last command in c that is
reachable from the root via sequential composition modes.

consts "@@" :: "[com,com]⇒com" (infixr 70)
primrec

"SKIP @@ c = c"
"(x:== E) @@ c = ((x:== E); c)"
"(c;d) @@ e = (c; d @@ e)"
"(IF b THEN c ELSE d) @@ e = (IF b THENc @@ e ELSEd @@ e)"
"(WHILE b DO c) @@ e = ((WHILE b DOc);e)"

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 83

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

Proofs for Correctness are straight-forward (done in
Isabelle/HOL) based on the shown rules for denotationally
equivalent programs ...

Theorem: Unwind and Concat correct

C(c @@ d) = C(c;d) and C(unwind(n,c)) = C(c)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 84

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

This allows us (together with the equivalence of natural and
denotational semantics) to generalize our scheme:

∀ s s’. 〈 unwind(n,c) ,s〉 −→c s’ ∧ P s → Q s’

=⇒|= {P}c{Q}

for an arbitrary (user-defined!) n !
Or in natural deduction notation:[〈unwind(n, c), s〉 →c s

′, P s
]
s,s′···

Q s′

|= {P} c {Q}

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 85

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

This allows us (together with the equivalence of natural and
denotational semantics) to generalize our scheme:

∀ s s’. 〈 unwind(n,c) ,s〉 −→c s’ ∧ P s → Q s’

=⇒|= {P}c{Q}

for an arbitrary (user-defined!) n !
Or in natural deduction notation:[〈unwind(n, c), s〉 →c s

′, P s
]
s,s′···

Q s′

|= {P} c {Q}

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 85

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

Example:
“|= {True} integer_squareroot {i2 ≤ a ∧ a ≤ (i + 1)2}”
Setting the depth to n = 3 and running the process yields:

1. [[9 ≤s a; 〈WHILE λs. s sum ≤s a
DO i :== λs. Suc (s i) ;

(tm :== λs. Suc (Suc (s tm)) ;
sum :== λs. s tm + s sum),

s(i := 3, tm := 7, sum := 16)〉 −→c s’

]] =⇒post s’
2. [[4 ≤s a; 8 < s a ; s’ = s (i := 2, tm := 5, sum := 9)]] =⇒post s’
3. [[1 ≤s a; s a < 4; s’ = s (i := 1, tm := 3, sum := 4)]] =⇒post s’
4. [[s a = 0 ; s’ = s(tm := 1, sum := 1, i := 0)]] =⇒post s’

which is a neat enumeration of all path-conditions for paths up
to n = 3 times through the loop, except subgoal 1, which is:

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 86

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

Example:
“|= {True} integer_squareroot {i2 ≤ a ∧ a ≤ (i + 1)2}”
Setting the depth to n = 3 and running the process yields:

1. [[9 ≤s a; 〈WHILE λs. s sum ≤s a
DO i :== λs. Suc (s i) ;

(tm :== λs. Suc (Suc (s tm)) ;
sum :== λs. s tm + s sum),

s(i := 3, tm := 7, sum := 16)〉 −→c s’

]] =⇒post s’
2. [[4 ≤s a; 8 < s a ; s’ = s (i := 2, tm := 5, sum := 9)]] =⇒post s’
3. [[1 ≤s a; s a < 4; s’ = s (i := 1, tm := 3, sum := 4)]] =⇒post s’
4. [[s a = 0 ; s’ = s(tm := 1, sum := 1, i := 0)]] =⇒post s’

which is a neat enumeration of all path-conditions for paths up
to n = 3 times through the loop, except subgoal 1, which is:

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 86

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Explicit test-Hypothesis in White-Box-Tests:

1. THYP(9 ≤s a ∧〈WHILEλs. s sum ≤s a
DO i :== λs. Suc (s i) ;
(tm :== λs. Suc (Suc (s tm)) ;

sum :== λs. s tm + s sum),
s(i := 3, tm := 7, sum := 16)〉 −→c s’

→ post s’)

... a kind of “structural” regularity hypothesis !

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 87

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Summary: Program-based Tests in

HOL-TestGen:

1 It is possible to do white-box tests in HOL-TestGen

2 Requisite: Denotational and Natural Semantics for a
programming language

3 Proven correct unfolding scheme

4 Explicit Test-Hypotheses Concept also applicable for
Program-based Testing

5 Can either verify or test paths ...

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 88

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Summary (II) : Program-based Tests in

HOL-TestGen:

Open Questions:

1 Does it scale for large programs ???

2 Does it scale for complex memory models ???

3 What heuristics should we choose ???

4 How to combine the approach with randomized tests?

5 How to design Modular Test Methods ???

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 89

Outline

1 Motivation and Introduction

2 From Foundations to Pragmatics

3 Advanced Test Scenarios

4 Case Studies

5 Conclusion

Case Studies Firewall Testing

Specification-based Firewall Testing

Objective: test if a firewall configuration implements a given
firewall policy

Procedure: as usual:
1 model firewalls (e.g., networks and protocols)

and their policies in HOL
2 use HOL-TestGen for test-case generation

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 91

Case Studies Firewall Testing

A Typical Firewall Policy

DMZ

Internet (extern)

Intranet (intern)
��
��
��
��

��
��
��
��

−→ Intranet DMZ Internet
Intranet - smtp, imap all protocols except smtp
DMZ ∅ - smtp
Internet ∅ http,smtp -

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 92

Case Studies Firewall Testing

A Bluffers Guide to Firewalls

A Firewall is a

state-less or
state-full

packet filter.

The filtering (i.e., either accept or deny a packet) is based
on the

source
destination
protocol
possibly: internal protocol state

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 93

Case Studies Firewall Testing

The State-less Firewall Model I

First, we model a packet:

types (α,β) packet = "id ×protocol ×αsrc ×αdest ×βcontent"

where

id: a unique packet identifier, e. g., of type Integer

protocol: the protocol, modeled using an enumeration type
(e.g., ftp, http, smtp)

α src (α dest): source (destination) address, e.g., using IPv4:

types
ipv4_ip = "(int ×int ×int ×int)"
ipv4 = "(ipv4_ip ×int)"

β content: content of a packet

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 94

Case Studies Firewall Testing

The State-less Firewall Model II

A firewall (packet filter) either accepts or denies a packet:

datatype
α out = accept α| deny

A policy is a map from packet to packet out:

types
(α, β) Policy = "(α, β) packet ⇀((α, β) packet) out"

Writing policies is supported by a specialised combinator
set

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 95

Case Studies Firewall Testing

Testing State-less Firewalls: An Example I

DMZ

Internet (extern)

Intranet (intern)
��
��
��
��

��
��
��
��

−→ Intranet DMZ Internet
Intranet - smtp, imap all protocols except smtp
DMZ ∅ - smtp
Internet ∅ http,smtp -

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 96

Case Studies Firewall Testing

Testing State-less Firewalls: An Example II

src dest protocol action
Internet DMZ http accept
Internet DMZ smtp accept

...
...

...
...

∗ ∗ ∗ deny

constdefs Internet_DMZ :: "(ipv4, content) Rule"
"Internet_DMZ ≡

(allow_prot_from_to smtp internet dmz) ++
(allow_prot_from_to http internet dmz)"

The policy can be modelled as follows:

constdefs test_policy :: "(ipv4,content) Policy"
"test_policy ≡deny_all ++ Internet_DMZ ++ ..."

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 97

Case Studies Firewall Testing

Testing State-less Firewalls: An Example III

Using the test specification

test_spec "FUT x = test_policy x"

results in test cases like:

FUT
(6,smtp,((192,169,2,8),25),((6,2,0,4),2),data) =
Some (accept
(6,smtp,((192,169,2,8),25),((6,2,0,4),2),data))
FUT (2,smtp,((192,168,0,6),6),((9,0,8,0),6),data)
= Some deny

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 98

Case Studies Firewall Testing

State-full Firewalls: An Example (ftp) I

ftp_close

ftp_data

ftp_port_request

ftp_init

Server Client

 ftp_data

ftp_close
ftp_port_req

ftp_init

Exception

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 99

Case Studies Firewall Testing

State-full Firewalls: An Example (ftp) II

based on our state-less model:
Idea: a firewall (and policy) has an internal state:

the firewall state is based on the history and the current
policy:

types (α,β,γ) FWState = "α ×(β,γ) Policy"

where FWStateTransition maps an incoming packet to a
new state

types (α,β,γ) FWStateTransition =
"((β,γ) In_Packet ×(α,β,γ) FWState) ⇀
((α,β,γ) FWState)"

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 100

Case Studies Firewall Testing

State-full Firewalls: An Example (ftp) III

HOL-TestGen generates test case like:

FUT [(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), close),
(6, ftp, ((4, 7, 9, 8), 21), ((192, 168, 3, 1), 3), ftp_data),
(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), port_request 3),
(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), init)] =

([(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), close),
(6, ftp, ((4, 7, 9, 8), 21), ((192, 168, 3, 1), 3), ftp_data),
(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), port_request 3),
(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), init)],

new_policy)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 101

Case Studies Firewall Testing

Firewall Testing: Summary

Successful testing if a concrete configuration of a network
firewall correctly implements a given policy

Non-Trivial Test-Case Generation

Non-Trivial State-Space (IP Adresses)

Sequence Testing used for Stateful Firewalls

Realistic, but amazingly concise model in HOL!

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 102

Outline

1 Motivation and Introduction

2 From Foundations to Pragmatics

3 Advanced Test Scenarios

4 Case Studies

5 Conclusion

Conclusion

Conclusion I

Approach based on theorem proving

test specifications are written in HOL
functional programming, higher-order, pattern matching

Test hypothesis explicit and controllable by the user
(could even be verified!)

Proof-state explosion controllable by the user

Although logically puristic, systematic unit-test of a “real”
compiler library is feasible!

Verified tool inside a (well-known) theorem prover

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 104

Conclusion

Conclusion II

Explicit Test Hypothesis are controllable by the
test-engineer (can be seen as proof-obligation!)

In HOL, Sequence Testing and Unit Testing are the same!

The Sequence Test Setting of HOL-TestGen is effective
(see Firewall Test Case Study)

HOL-Testgen is a verified test-tool
(entirely based on derived rules . . .)

The White-box Test offers potentials to prune unfeasible
paths early ... (but no large programs tried so far ...)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 105

Conclusion

Conclusion II

Explicit Test Hypothesis are controllable by the
test-engineer (can be seen as proof-obligation!)

In HOL, Sequence Testing and Unit Testing are the same!
TS pattern Unit Test:

pre x −→ post x(prog x)

The Sequence Test Setting of HOL-TestGen is effective
(see Firewall Test Case Study)

HOL-Testgen is a verified test-tool
(entirely based on derived rules . . .)

The White-box Test offers potentials to prune unfeasible
paths early ... (but no large programs tried so far ...)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 105

Conclusion

Conclusion II

Explicit Test Hypothesis are controllable by the
test-engineer (can be seen as proof-obligation!)

In HOL, Sequence Testing and Unit Testing are the same!
TS pattern Sequence Test:

accept trace =⇒ P(Mfold trace σ0prog)

The Sequence Test Setting of HOL-TestGen is effective
(see Firewall Test Case Study)

HOL-Testgen is a verified test-tool
(entirely based on derived rules . . .)

The White-box Test offers potentials to prune unfeasible
paths early ... (but no large programs tried so far ...)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 105

Conclusion

Conclusion II

Explicit Test Hypothesis are controllable by the
test-engineer (can be seen as proof-obligation!)

In HOL, Sequence Testing and Unit Testing are the same!
TS pattern Reactive Sequence Test:

accept trace =⇒ P(Mfold trace σ0

(observer observer rebind subst prog))

The Sequence Test Setting of HOL-TestGen is effective
(see Firewall Test Case Study)

HOL-Testgen is a verified test-tool
(entirely based on derived rules . . .)

The White-box Test offers potentials to prune unfeasible
paths early ... (but no large programs tried so far ...)

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 105

Bibliography

Bibliography I

Achim D. Brucker, Lukas Brügger, and Burkhart Wolff.
Model-based firewall conformance testing.
In Kenji Suzuki and Teruo Higashino, editors,
Testcom/FATES 2008, number 5047 in Lecture Notes in
Computer Science, pages 103–118. Springer-Verlag, 2008.

Achim D. Brucker and Burkhart Wolff.
Interactive testing using HOL-TestGen.
In Wolfgang Grieskamp and Carsten Weise, editors, Formal
Approaches to Testing of Software (FATES 05), LNCS 3997,
pages 87–102. Springer-Verlag, Edinburgh, 2005.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 106

Bibliography

Bibliography II

Achim D. Brucker and Burkhart Wolff.
Symbolic test case generation for primitive recursive
functions.
In Jens Grabowski and Brian Nielsen, editors, Formal
Approaches to Software Testing (FATES), volume 3395 of
Lecture Notes in Computer Science, pages 16–32.
Springer-Verlag, Linz, 2005.

Achim D. Brucker and Burkhart Wolff.
HOL-TestGen 1.0.0 user guide.
Technical Report 482, ETH Zurich, April 2005.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 107

Bibliography

Bibliography III

Achim D. Brucker and Burkhart Wolff.
Test-sequence generation with HOL-TestGen – with an
application to firewall testing.
In Bertrand Meyer and Yuri Gurevich, editors, TAP 2007:
Tests And Proofs, number 4454 in Lecture Notes in
Computer Science. Springer-Verlag, Zurich, 2007.

Jeremy Dick and Alain Faivre.
Automating the generation and sequencing of test cases
from model-based specications.
In J.C.P. Woodcock and P.G. Larsen, editors, FME 93, volume
670 of LNCS, pages 268–284. Springer-Verlag, 1993.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 108

Bibliography

Bibliography IV

Marie-Claude Gaudel.
Testing can be formal, too.
In Peter D. Mosses, Mogens Nielsen, and Michael I.
Schwartzbach, editors, TAPSOFT 95, volume 915 of Lecture
Notes in Computer Science, pages 82–96. Springer-Verlag,
Aarhus, Denmark, 1995.

Wolfgang Grieskamp, Nicolas Kicillof, Dave MacDonald,
Alok Nandan, Keith Stobie, and Fred L. Wurden.
Model-based quality assurance of windows protocol
documentation.
In ICST, pages 502–506, 2008.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 109

Bibliography

Bibliography V

The HOL-TestGen Website.
http://www.brucker.ch/projects/hol-testgen/.

Margus Veanes, Colin Campbell, Wolfgang Grieskamp,
Wolfram Schulte, Nikolai Tillmann, and Lev Nachmanson.
Model-based testing of object-oriented reactive systems
with spec explorer.
In Formal Methods and Testing, pages 39–76, 2008.

Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid.
Test input generation with java pathfinder.
In ISSTA, pages 97–107, 2004.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 110

Bibliography

Bibliography VI

Hong Zhu, Patrick A.V. Hall, and John H. R. May.
Software unit test coverage and adequacy.
ACM Computing Surveys, 29(4):366–427, December 1997.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 111

Part II

Appendix

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 112

Outline

6 The HOL-TestGen System

7 A Hands-on Example

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 113

The HOL-TestGen System Download

Download HOL-TestGen

available, including source at:
http://www.brucker.ch/projects/hol-testgen/

for a “out of the box experience,” try IsaMorph:
http://www.brucker.ch/projects/isamorph/

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 114

The HOL-TestGen System The System Architecture

The System Architecture of HOL-TestGen

test data

test cases

program under test

test harness

test script

test specification

(Test Result)
Test Trace

HOL-TestGen

Isabelle/HOL

SML-systemtest executable

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 115

A Hands-on Example The HOL-TestGen Workflow

The HOL-TestGen Workflow

We start by

1 writing a test theory (in HOL)

2 writing a test specification (within the test theory)

3 generating test cases

4 interactively improve generated test cases (if necessary)

5 generating test data

6 generating a test script.

And finally we,

1 build the test executable

2 and run the test executable.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 116

A Hands-on Example Writing a Test Theory

Writing a Test Theory

For using HOL-TestGen you have to build your Isabelle theories
(i.e. test specifications) on top of the theory Testing instead of
Main:

theory max_test = Testing:

. . .

end

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 117

A Hands-on Example Writing a Test Specification

Writing a Test Specification

Test specifications are defined similar to theorems in Isabelle,
e.g.

test_spec "prog a b = max a b"

would be the test specification for testing a a simple program
computing the maximum value of two integers.

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 118

A Hands-on Example Test Case Generation

Test Case Generation

Now, abstract test cases for our test specification can
(automatically) generated, e.g. by issuing

apply(gen_test_cases 3 1 "prog" simp: max_def)

The generated test cases can be further processed, e.g.,
simplified using the usual Isabelle/HOL tactics.

After generating the test cases (and test hypothesis’) you
should store your results, e.g.:

store_test_thm "max_test"

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 119

A Hands-on Example Test Data Selection

Test Data Selection

In a next step, the test cases can be refined to concrete test
data:

gen_test_data "max_test"

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 120

A Hands-on Example Test Data Selection

Test Script Generation

After the test data generation, HOL-TestGen is able to generate
a test script:

generate_test_script "test_max.sml" "max_test" "prog"
"myMax.max"

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 121

A Hands-on Example Testing a Simple Function: max

A Simple Testing Theory: max

theory max_test = Testing:

test_spec "prog a b = max a b"
apply(gen_test_cases 1 3 "prog" simp: max_def)
store_test_thm "max_test"
gen_test_data "max_test"
generate_test_script "test_max.sml" "max_test" "prog"

"myMax.max"
end

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 122

A Hands-on Example Testing a Simple Function: max

A (Automatically Generated) Test Script

1 structure TestDriver : sig end = struct
val return = ref ~63;
fun eval x2 x1 = let val ret = myMax.max x2 x1

in ((return := ret) ; ret) end
fun retval () = SOME(! return) ;

6 fun toString a = Int . toString a;
val testres = [] ;

val pre_0 = [] ;
val post_0 = fn () => ((eval ~23 69 = 69));
val res_0 = TestHarness . check retval pre_0 post_0 ;

11 val testres = testres@[res_0] ;
val pre_1 = [] ;
val post_1 = fn () => ((eval ~11 ~15 = ~11));
val res_1 = TestHarness . check retval pre_1 post_1 ;
val testres = testres@[res_1] ;

16 val _ = TestHarness . pr intL is t toString testres ;
end

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 123

A Hands-on Example Test Result Verification

Building the Test Executable

Assume we want to test the SML implementation

structure myMax = struct
fun max x y = i f (x < y) then y else x

3 end

stored in the file max.sml.

The easiest option is to start an interactive SML session:

use "harness . sml" ;
2 use "max.sml" ;

use "test_max .sml" ;

It is also an option to compile the test harness, test script
and our implementation under test into one executable.

Using a foreign language interface we are able to test
arbitrary implementations (e. g., C, Java or any language
supported by the .Net framework).

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 124

A Hands-on Example Test Result Verification

The Test Trace

Running our test executable produces the following test trace:

Test Results:
=============
Test 0 - SUCCESS, result: 69
Test 1 - SUCCESS, result: ~11

Summary:

Number successful tests cases: 2 of 2 (ca. 100%)
Number of warnings: 0 of 2 (ca. 0%)
Number of errors: 0 of 2 (ca. 0%)
Number of failures: 0 of 2 (ca. 0%)
Number of fatal errors: 0 of 2 (ca. 0%)

Overall result: success
===============

B. Wolff HOL-TestGen: Theorem-prover based Testing A Tutorial at the LRI 125

