Theorem-prover based Testing
with HOL-TestGen

Achim D. Brucker! Lukas Briigger? Burkhart Wolff3

1SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2|nformation Security, ETH Zirich, Switzerland
lukas.bruegger@inf.ethz.ch

3Universitat des Saarlandes, 66041 Saarbriicken, Germany
wolff@wjpserver.cs.uni-sb.de

A Tutorial at NIl
Tokyo, 9th June 2008

Outline

‘ Motivation and Introduction

Outline

. Motivation and Introduction

‘ From Foundations to Pragmatics
‘ Advanced Test Scenarios

. Case Studies

. Conclusion

State of the Art

“Dijkstra’s Verdict”:

Program testing can be used to show the presence of bugs, but
never to show their absence.

@ Is this always true?
@ Can we bother?
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Our First Vision Our Second Vision

@ Observation:
Any testcase-generation technique is based on and limited

Testing and verification may converge, by underlying constraint-solution techniques.

in a precise technical sense:
@ Approach:

@ specification-based (black-box) unit testing Testing should be integrated in an environment combining

@ generation and management of formal test hypothesis automated and interactive proof techniques.

@ the test engineer must decide over, abstraction level, split

@ verification of test hypothesis (not discussed here) .
rules, breadth and depth of data structure exploration ...

@ we mistrust the dream of a push-button solution
@ byproduct: a verified test-tool
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Components of HOL-TestGen Components-Overview
@ HOL (Higher-order Logic):
e “Functional Programming Language with Quantifiers” ProofGeneral
e plus definitional libraries on Sets, Lists, ... ) }
@ can be used meta-language for Hoare Calculus for Java, Z, HOL-TestGen

@ HOL-TestGen:
e based on the interactive theorem prover Isabelle/HOL
e implements these visions

Isabelle/HOL

SML-System

@ Proof General:

@ user interface for Isabelle and HOL-TestGen Figure: The Components of HOL-TestGen
e step-wise processing of specifications/theories
e shows current proof states
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HOL-TestGen and its Workflow
The HOL-TestGen Workflow

The HOL-TestGen workflow is basically fivefold:
@ Step I: writing a test theory (in HOL)

@ Step II: writing a test specification
(in the context of the test theory)

@ Step Ill: generating a test theorem (roughly: testcases)
@ Step IV: generating test data
@ Step V: generating a test script
And of course:
@ building an executable test driver
@ and running the test driver
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Motivation and Introduction HOL-TestGen and its Workflow
g
Step |: Writing a Test Theory
.

@ Write recursive functions in HOL:

consts is sorted:: "('a::ord) list =-bool"
primrec
"is sorted [] = True"
"is sorted (x#xs) = case xs of
[] = True
| y#ys =((x <y) V(x =y))
Ais_sorted xs"
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HOL-TestGen and its Workflow
Step I: Writing a Test Theory

@ Write data types in HOL:

theory List test
imports Testing
begin

datatype ’a list =

Nil  ("[1")

| Cons ’a "’a list" (infixr "#" 65)

HOL-TestGen: Theorem-prover based Testing
Step II: Write a Test Specification

@ writing a test specification (TS)
as HOL-TestGen command:

test_spec "is sorted (prog (1::('a list)))"
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HOL-TestGen and its Workflow
Step lll: Generating Testcases

@ executing the testcase generator in form of an Isabelle
proof method:

apply(gen test cases "prog")

@ concluded by the command:
store_test_thm "test sorting"

...that binds the current proof state as test theorem to
the name test_sorting.

A Tutorial at NIl

HOL-TestGen: Theorem-prover based Testing
.
Step IV: Test Data Generation

@ On the test theorem,
all sorts of logical massages can be performed.
@ Finally, a test data generator can be executed:

gen_test data "test sorting"

@ The test data generator
e extracts the testcases from the test theorem
@ searches ground instances satisfying the constraints (none
in the example)
@ Resulting in test statements like:

is_sorted (prog [])
is_sorted (prog [3])

is sorted (prog [6, 8])
is_sorted (prog [0, 10, 1])
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HOL-TestGen and its Workflow
Step Ill: Generating Testcases

@ The test theorem contains clauses (the test-cases):

is_sorted (prog [])

is sorted (prog [?X1X17])

is_sorted (prog [?X2X13, ?X1X12])

is sorted (prog [?X3X7, ?X2X6, ?X1X5])

@ as well as clauses (the test-hypothesis):

THYP((dx. is sorted (prog [x])) —(V x. is sorted(prog [x])))

THYP((V1. 4 < |l| —is_sorted(prog 1))

@ We will discuss these hypothesises later in great detail.
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HOL-TestGen: Theorem-prover based Testing
Step V: Generating A Test Script

@ Finally, a test script or test harness can be generated:

gen_test script "test lists.sml" list" prog

@ The generated test script can be used to test an
implementation, e.g., in SML, C, or Java

A Tutorial at NII 16
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HOL-TestGen and its Workflow
The Complete Test Theory

theory List_test
imports Main begin

consts is_sorted:: "(‘a::ord) list =bool"

primrec "is_sorted [] True"

"is_sorted (x#xs) = case xs of
[1 = True
| y#ys =((x <y) V(x =y))
Ais_sorted xs"

test_spec "is_sorted (prog (I::("a list)))"
apply(gen_test_cases prog)
store_test_thm "test sorting"

gen_test data "test_sorting"
gen_test script "test_lists.sml" list" prog
end
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Motivation and Introduction HOL-TestGen and its Workflow
Tool-Demo!

W enacslnakagana,i

File Edit Options Buffers Tools

IEEEEEEE

test_spec (\snrd t & isin fy::int) t & strong_rediny t & blackine t)
(blacklnv(prog(y "

“pplvigen_test_cases oo )

store_test_thm " red-and-hlack—| "

testgen_params [iterations=100]

gen_test_data "red-and-black-inv"

thm " red-and-black-iny. test_data"ll

Index Isabelle Proof-General X-§

SUCCESS, re
st 3 - ** URRNING:
est 4 - ¢ URRNING: p
est 5 - SUCCESS, rg
est 6 - SUCCESS, rg
P
P
P

subsectmn 4+ An Alternatlve Annroach with a little Theorem Proving «)
_test .t (126,33 SYN-16263  (Isar script MMM X5:isabelld|

RSF = hlackin (prUg (31, TE (T E {TRE-45 E;y &1 E} 15 E)}

RSF = blackinv {orog (94, TE (T BE 99 E) -56 E)}

blackiny forog (-45, TE (TEE-92E) 46 (TEE -11 B}

blackiny (prog (-11, TB (TRE -11 E} 19 (TRE 35 B))}

blackiny fprog (39, TE (TREGE) 16 {TRE 33 E)N[

%—— =izabel |le-response=  Eof (13,53 {response) —-—-6:22 Mai|--———+

est 7 - **  LARNING:
est 8 - *  WARNING:
est 9 - *** FAILURE: pd
est 10 - SUCCESS,
ezt 11 - SUCCESS.

unber successful tests casesy 7 of 12 (oa, 582)
umber of warnings: 4 of 12 (ca, 33%)
unber of errorsy 0 of 12 (ca, 02}
umber of failurss: 1 of 12 (ca, 82}
unber of fatal errorsy 0 of 12 (ca, 02}

[verall result: failed

Figure: HOL-TestGen Using Proof General at one Glance
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Motivation and Introduction HOL-TestGen and its Workflow

Testing an Implementation

Executing the generated test script may result in:

Test Results:

Test 0 - xxx FAILURE: post-condition false,

Test 1 - SUCCESS, result: [6, 8]

Test 2 - SUCCESS, result: [3]

Test 3 - SUCCESS, result: []

Summary:

Number successful tests cases: 3 of 4 (ca.
Number of warnings: 0 of 4 (ca.
Number of errors: 0 of 4 (ca.
Number of failures: 1 of 4 (ca.
Number of fatal errors: 0 of 4 (ca.

Overall result: failed
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’ From Foundations to Pragmatics
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The Foundations of HOL-TestGen

@ Basis:
o Isabelle/HOL library: 10000 derived rules, ...
@ about 500 are organized in larger data-structures used by

Isabelle’s proof procedures, ...
@ These Rules were used in advanced proof-procedures for:
e Higher-Order Rewriting
o Tableaux-based Reasoning —
a standard technique in automated deduction
e Arithmetic decision procedures (Coopers Algorithm)
@ gen testcases is an automated tactical program using
combination of them.

HOL-TestGen: Theorem-prover based Testing A Tutorial at NIl
The Core Tableaux-Calculus
@ Safe Introduction Rules for logical connectives:
[-Q] [P] [P]
P Q P Q false
t=t true PAQ PVQ P—Q —P
@ Safe Elimination Rules:
0] =Pl (0]

P.0) ]

false PAO R PVOR R P—O R R
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Some Rewrite Rules
@ Rewriting is a easy to understand deduction paradigm

(similar FP) centered around equality
@ Arithmetic rules, e.qg.,

Suc(x +y) = x + Suc(y)
X+y=y+x
Suc(x) # 0
@ Logic and Set Theory, e.qg.,
Vx. (PxAQXx) = (¥x. Px) A (Vx. Px)
Ux €S. (PxUQx)= (Ux €S.Px)U (Ux €5.0x)
[A=A A= B=B]= (AAB)=(A'AB)
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The Core Tableaux-Calculus

A Tutorial at NII

@ Safe Introduction Quantifier rules:

P ?x /\X.PX
dx. P x Vx. P x

[P x]

@ Safe Quantifier Elimination Ix. P x /\x. Q

Q
@ Critical Rewrite Rule:

if P then A else B= (P — A) A (=P — B)

A Tutorial at NII
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Explicit Test Hypothesis: The Concept Taming Infinity I: Regularity Hypothesis

@ What to do with infinite data-strucutures?

@ What is the connection between test-cases and test

tat ¢ d the test th ? @ What to do with infinite data-strucutures of type 77
statements an e test theorems?

Conceptually, we split the set of all data of type 7 into
@ Two problems, one answer: Introducing test hypothesis

“on the fly": {xu71| x| <k}Ui{x:7]||x| >k}
THYP : bool =bool
THYP(x) =x
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Taming Infinity I: Motivation Taming Infinity I: Data Separation Rules

This motivates the (derived) data-separation rule:
Consider the first set {X :: 7 | |x| < k} o (r =a list, k = 3):
for the case 7 = « list, k = 2, 3,4.
These sets can be presented as: (x =] [x = [a]] [x = [a,b]]

1) [x:7|<2 =(x=[]) V(3 a.x = [a]) . : .
2) |x:7|<3 = (x = []) V(3 a. x = [a]) P a. P N\ ab. P THYP M
P

V(d ab.x =1[abl)
3) |x::7|<4 = (x =[]) V(3 a. x = [a])
V(3 ab.x=[ab]) V(3 abec.x =[ab,c]) @ Here, M is an abbreviation for:

Vx. k< |x| —Px
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Taming Infinity Il: Uniformity Hypothesis

@ What is the connection between test cases and test
statements and the test theorems?

@ Well, the “uniformity hypothesis”:

@ Once the program behaves correct for one test case,
it behaves correct for all test cases ...
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HOL-TestGen: Theorem-prover based Testing
Testcase Generation by NF Computations

Test-theorem is computed out of the test specification by

@ a heuristicts applying Data-Separation Theorems

@ a rewriting normal-form computation

@ a tableaux-reasoning normal-form computation

@ shifting variables referring to the program under test prog
test into the conclusion, e.g.:
[ ~(prog x = c); ~(prog x = d) [—A
is transformed equivalently into
[-A] = (prog x = ¢) V(prog x = d)

@ as a final step, all resulting clauses were normalized by
applying uniformity hypothesis to each free variable.

AN DI Vo Gl Ta o =TV o To [T T o M MU 11 Ml H O L-TestGen: Theorem-prover based Testing

A Tutorial at NII 31

Taming Infinity Il: Uniformity Hypothesis

@ Using the uniformity hypothesis, a test case:
n) [Clx; ..; Cmx] =TSx
is transformed into:

n) [ C17?x; ..; Cm ?x] =TS ?x
n+1) THYP((dx. Cl x...Cm x —TS x)
—((Vx.Clx..Cmx —TS X))
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HOL-TestGen: Theorem-prover based Testing
Testcase Generation: An Example

theory TestPrimRec
imports Main
begin
primrec 1) prog x [x]
x mem [] = False 2) Ab. prog x [x,b]
x mem (y#S) = ify =x 3) A\a. a#x=—prog x [a,x]
then True 4) THYP(3 <size (S)
else x mem S —V x. x mem S
—prog x S)
test_spec:
"X mem S =—-prog x S"
apply(gen testcase 0 0)
I T e Al O L TestGen: Theorem-prover based Testing ATutorial at NIl 32



Putting the Pieces Together
Sample Derivation of Test Theorems

Example

X mem S —prog x S

v
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. .
Sample Derivation of Test Theorems

Example

X mem S —prog x S

canonization leads to:

1. x mem [] =prog x []
2. Aa. x mem [a] =>prog x [a]
3. Aa b. x mem [a,b] =prog x [a,b]

4. THYP(V S. 3 <|S| —x mem S —prog x S)

v
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Putting the Pieces Together
Sample Derivation of Test Theorems

Example

X mem S —prog x S

is transformed via data-separation lemma to:

1. S=[] =x mem S —prog x S
2. ANa. S=[a] =x mem S —prog x S
3. Aa b. S=[a,b] =x mem S —prog x S

4. THYP(V S. 3 <|S| —x mem S —prog x S)

o

HOL-TestGen: Theorem-prover based Testing A Tutorial at NII
. .
Sample Derivation of Test Theorems

Example

X mem S —prog x S

which is reduced via the equation for mem:

1. false =—>prog x []

2. Aa. if a = x then True
else x mem [] = prog x [a]
3. Aa b. if a = x then True
else x mem [b] =—prog x [a,b]
4. THYP(3 <|S| —x mem S —prog x S)

33
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Putting the Pieces Together
Sample Derivation of Test Theorems

Example

X mem S —prog x S

erasure for unsatisfyable constraints and rewriting conditionals
yields:

2. Aa. a = x V(a#x Afalse)
—>prog x [a]
3. Aa b. a = x V(a#x Ax mem [b]) =prog x [a,b]

4. THYP(V S. 3 <|S| —x mem S —prog x S)

v

HOL-TestGen: Theorem-prover based Testing
Sample Derivation of Test Theorems

A Tutorial at NIl 33

Example

X mem S —prog x S

...which is reduced by canonization and rewriting of mem to:

2. Aa. prog x [x]

3. Aa b. prog x [x,b]
3’. Aab. a#x =—prog x [a,x]

4. THYP(V S. 3 <|S| —x mem S —prog x S)

v
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Putting the Pieces Together
Sample Derivation of Test Theorems

Example

X mem S —prog x S

...which is further reduced by tableaux rules and canconiza-
tion to:

2. A\a. prog a [a]

3. Aa b. a = x =prog x [a,b]
3’. Aab. [ a#x; x mem [b] |[=prog x [a,b]
4. THYP(V S. 3 <|S| —x mem S —prog x S)

o

HOL-TestGen: Theorem-prover based Testing
Sample Derivation of Test Theorems

A Tutorial at NII 33

Example

X mem S —prog x S

... as a final step, uniformity is expressed:

prog ?x1 [?x1]

prog ?x2 [?x2,?b2]

?a3#£?x1 =prog ?x3 [?a3,?x3]
THYP(dx.prog x [x] —prog x [x]

WD

7. THYP(V S. 3 <|S| —x mem S —prog x S)

v
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Summing up: Summing up:

The test-theorem for a test specification TS has the general

form:
[TCyi;...;TCy: THYP Hy;...; THYP Hp] = TS @ The overall meaning of the test-theorem is:
1t n» LA m
e if the program passes the tests for all test-cases,
where the test cases TC; have the form: e and if the test hypothesis are valid for PUT,
e then PUT complies to testspecification TS.
[Cix;...; Cmx; THYP Hy;...; THYP Hp] = P x (prog x) @ Thus, the test-theorem establishes a formal link

. . . . between test and verification !!!
and where the test-hypothesis are either uniformity or

regularity hypothethises.
The C; in a test case were also called constraints of the

testcase.
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From Foundations to Pragmatics A Quick Glance on Test Data Generation Advanced Test Scenarios Tuning the Workflow by Interactive Proof
Generating Test Data Outline

Test data generation is now a constraint satisfaction problem.

@ We eliminate the meta variables ?x, ?y, ... by
constructing values (“ground instances”) satisfying the
constraints. This is done by:
e random testing (for a smaller input space!!!)
arithmetic decision procedures ‘ Advanced Test Scenarios

@ reusing pre-compiled abstract test cases
o ..

e interactive simplify and check, if constraints went away!

@ Output: Sets of instantiated test theorems
(to be converted into Test Driver Code)
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Tuning the Workflow by Interactive Proof
Tuning the Workflow by Interactive Proof

Observations:

@ Test-theorem generations is fairly easy ...

@ Test-data generation is fairly hard ...
(it does not really matter if you use random solving
or just plain enumeration !!!)

@ Both are scalable processes ...
(via parameters like depth, iterations, ...)

@ There are bad and less bad forms of test-theorems !!!

@ Recall: Test-theorem and test-data generation are normal
form computations:
—> More Rules, better results ...

HOL-TestGen: Theorem-prover based Testing
Case Studies: Red-black Trees

A Tutorial at NIl

Motivation
Test a non-trivial and widely-used data structure.

@ part of the SML standard library

@ widely used internally in the smlI/NJ compiler, e.g., for
providing efficient implementation for Sets, Bags, ...;

@ very hard to generate (balanced) instances randomly
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Tuning the Workflow by Interactive Proof
What makes a Test-case “Bad”

@ redundancy.
@ many unsatisfiable constraints.
@ many constraints with unclear logical status.

@ constraints that are difficult to solve.
(like arithmetics).

VAN DI (Vo Gl Ta Lo W= TV o o [T Ta o M= MMV B H O L-TestGen: Theorem-prover based Testing
Advanced Test Scenarios Tuning the Workflow by Interactive Proof

A Tutorial at NII 39

Red-Black Trees:

Red Invariant: each red node has a
black parent.

Black Invariant: each path from the
root to an empty node
(leaf) has the same
number of black nodes.

datatype
color=R| B
tree = E | T color (a tree) (5::ord item) (« tree)
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Tuning the Workflow by Interactive Proof
Modeling Red-black Trees I

@ Red-Black Trees: Test Theory

consts
redinv :: tree = bool
blackinv :: tree =-bool

recdef blackinv measure () t. (size t))
blackinv E = True
blackinv (T color ay b) =
((blackinv a) A(blackinv b)
A ((max B (height a)) = (max B (height b))))

recdev redinv measure ...

HOL-TestGen: Theorem-prover based Testing
Red-black Trees: A first Summary

Observation:

A Tutorial at NIl 42

Guessing (i. e., random-solving) valid red-black trees is difficult.

@ On the one hand:
e random-solving is nearly impossible for solutions which are
“difficult” to find
e only a small fraction of trees with depth k are balanced
@ On the other hand:

@ we can quite easily construct valid red-black trees
interactively.

A Tutorial at NII
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Tuning the Workflow by Interactive Proof
Red-black Trees: Test Specification

@ Red-Black Trees: Test Specification

test_spec:

"isord t Aredinv t Ablackinv t
Aisin (y::int) t
N

(blackinv(prog(y,t)))"
where prog is the program under test (e. g., delete).
@ Using the standard-workflows results, among others:

RSF —blackinv (prog (100, TB E 7 E))
blackinv (prog (—91, TB (TR E —91 E) 5 E))

A Tutorial at NII 43

HOL-TestGen: Theorem-prover based Testing
Red-black Trees: A first Summary

Observation:
Guessing (i. e., random-solving) valid red-black trees is difficult.

@ On the one hand:
e random-solving is nearly impossible for solutions which are
“difficult” to find
e only a small fraction of trees with depth k are balanced
@ On the other hand:
@ we can quite easily construct valid red-black trees
interactively.

@ Question:
Can we improve the test-data generation by using our
knowledge about red-black trees?

A Tutorial at NII 44
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Tuning the Workflow by Interactive Proof
Red-black Trees: Hierarchical Testing |
Idea:

Characterize valid instances of red-black tree in more detail and
use this knowledge to guide the test data generation.

@ First attempt:
enumerate the height of some trees without black nodes

lemma maxB 0 1:
"max B height (E:: int tree) = 0"
lemma maxB 0 5:

"max B height (TR(TRE 2 E) (5::int) (TRE 7 E)) = 0"

@ But this is tedious ...

HOL-TestGen: Theorem-prover based Testing A Tutorial at NIl 45
How to Improve Test-Theorems

@ New simplification rule establishing unsatisfiability.
@ New rules establishing equational constraints for
variables.

(max B height (T xtl valt2) = 0) = (x = R)
(max B heightx = 0) =
(x=EvVvdayb.x=TRaybA

max(max B height a)
(max B height b) = 0)

@ Many rules are domain specific —
few hope that automation pays really off.
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Tuning the Workflow by Interactive Proof
Red-black Trees: Hierarchical Testing |
ldea:

Characterize valid instances of red-black tree in more detail and
use this knowledge to guide the test data generation.

@ First attempt:
enumerate the height of some trees without black nodes

lemma maxB 0 1:
"max B height (E:: int tree) = 0"
lemma maxB 0 5:

"max B height (TR (T RE 2 E) (5::int) (TRE 7 E)) = 0"

@ But this is tedious ...and error-prone
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Advanced Test Scenarios Tuning the Workflow by Interactive Proof

@ logical massage of test-theorem.

@ in-situ improvements:
add new rules into the context before gen test cases.

@ post-hoc logical massage of test-theorem.

@ in-situ improvements:
add new rules into the context before gen test data.
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Tuning the Workflow by Interactive Proof Tuning the Workflow by Interactive Proof
Red-black Trees: sml/NJ Implementation Red-black Trees: sml/NJ Implementation

o

(a) pre-state (b) pre-state: delete “8”

Figure: Test Data for Deleting a Node in a Red-Black Tree Figure: Test Data for Deleting a Node in a Red-Black Tree
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Red-black Trees: sml/NJ Implementation Red-black Trees: sml/NJ Implementation

(b) pre-state: delete “8” (c) correct result (b) pre-state: delete “8” (c) correct result (d) result of sml/N]J

Figure: Test Data for Deleting a Node in a Red-Black Tree Figure: Test Data for Deleting a Node in a Red-Black Tree
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Tuning the Workflow by Interactive Proof
Red-black Trees: Summary

@ Statistics: 348 test cases were generated
(within 2 minutes)

@ One error found: crucial violation against
red/black-invariants

@ Red-black-trees degenerate to linked list
(insert/search, etc. only in linear time)

@ Not found within 12 years
@ Reproduced meanwhile by random test tool

HOL-TestGen: Theorem-prover based Testing
Apparent Limitations of HOL-TestGen

A Tutorial at NIl

@ No Non-determinism.
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A Tutorial at NII

Motivation: Sequence Test

@ So far, we have used HOL-TestGen only for test
specifications of the form:

pre x — post(prog x)

@ This seems to limit the HOL-TestGen approach to
UNIT-tests.

HOL-TestGen: Theorem-prover based Testing
Apparent Limitations of HOL-TestGen

A Tutorial at NII

@ post mustindeed be executable; however, the pre-
post style of specification represents a relational
description of prog.
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Advanced Test Scenarios Sequence Testing Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen Apparent Limitations of HOL-TestGen

@ post must indeed be executable; however, the pre- @ post mustindeed be executable; however, the pre-
post style of specification represents a relational post style of specification represents a relational
description of prog. description of prog.

@ HOL has lists and recursive predicates; thus sets of

°
No Automata - No Tests for Sequential Behaviour. ,
lists, thus languages ...
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Apparent Limitations of HOL-TestGen Apparent Limitations of HOL-TestGen

@ post mustindeed be executable; however, the pre- @ post mustindeed be executable; however, the pre-
post style of specification represents a relational post style of specification represents a relational
description of prog. description of prog.

@ HOL has lists and recursive predicates; thus sets of @ HOL has lists and recursive predicates; thus sets of
lists, thus languages ... lists, thus languages ...

@ No possibility to describe reactive tests. @ HOL has Monads. And therefore means for IO-

specifications.
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Representing Sequence Test

@ Test-Specification Pattern:
accept trace —P(Mfold trace oy prog)
where

Mfold [] o = Some o
MPFold (input::R) = case prog(input, o) of
None = None
| Some o'=-Mfold R ¢’ prog

@ Can this be used for reactive tests?

HOL-TestGen: Theorem-prover based Testing
Example: A Reactive System |

A Tutorial at NIl

@ Atoy client-server system:

req?X — port!Y[Y < X] —
(recN.send!D.Y — ack — N
O stop — ack — SKIP)
a channel is requested within a bound X, a channel Y is

chosen by the server, the client communicates along this
channel ...
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Example: A Reactive System |

@ A toy client-server system:

req?X port!Y send?D!Y
stop ack

- =

a channel is requested within a b&tind X, a channel Y is
chosen by the server, the client communicates along this
channel ...

HOL-TestGen: Theorem-prover based Testing
Example: A Reactive System |

A Tutorial at NII 53

@ A toy client-server system:

req?X — port!Y[Y < X] —
(recN.send!D.Y — ack — N
Ostop — ack — SKIP)

a channel is requested within a bound X, a channel Y is
chosen by the server, the client communicates along this
channel ...

Observation:

X and Y are only known at runtime!
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Example: A Reactive System Il

Observation:
X and Y are only known at runtime!

@ Mfold is a program that manages a state at test run time.

@ use an environment that keeps track of the instances of X
and Y?

@ Infrastructure: An observer maps
abstract events (req X, portY, ...) in traces
to
concrete events (req4, port2, ...) in runs!

A Tutorial at NIl

HOL-TestGen: Theorem-prover based Testing
.
Example: A Reactive Test IV

@ Reactive Test-Specification Pattern:

accepttrace —
P(Mfold trace oo (observer rebind subst postcond ioprog))

@ for reactive systems!

A Tutorial at NII
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Example: A Reactive System |||

@ Infrastructure: the observer

observer rebind substitute postcond ioprog =
() input. (\ (o, ¢’). let input’= substitute cinput in
case ioprog input’ ¢’ of
None =-None (* ioprog failure — eg. timeout ... *)
| Some (output, ¢’”’) =let ¢’ = rebind coutput in

(if postcond (¢’’,¢’’’) input’ output
then Some(c”’, o’”’
else None (* postcond failure *) )))"

A Tutorial at NII 55
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Specification-based Firewall Testing

Objective: test if a firewall configuration implements a given
firewall policy
Procedure: as usual:
@ model firewalls (e.g., networks and protocols)
and their policies in HOL
@ use HOL-TestGen for test-case generation

A Tutorial at NIl

HOL-TestGen: Theorem-prover based Testing
A Bluffers Guide to Firewalls

@ A Firewall is a
o state-less or
o state-full
packet filter.
@ The filtering (i.e., either accept or deny a packet) is based
on the
@ source
e destination
e protocol
@ possibly: internal protocol state

A Tutorial at NII
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Case Studies Firewall Testing

A Typical Firewall Policy

Internet (extern)

%i\

Intranet (intern) j‘@ I
— \ Intranet DMZ Internet
Intranet - smtp, imap all protocols except smtp
DMZ 0 - smtp
Internet 1) http,smtp -
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The State-less Firewall Model |

First, we model a packet:
types («,3) packet = "id xprotocol xasrc xadest x(Gcontent"

where
id: a unique packet identifier, e. g., of type Integer

protocol: the protocol, modeled using an enumeration type
(e.g., ftp, http, smtp)

a src (a dest): source (destination) address, e.g., using IPv4:
types
ipv4 ip = "(int xint xint xint)"
ipv4d = "(ipv4 ip xint)"

(3 content: content of a packet
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The State-less Firewall Model I

@ A firewall (packet filter) either accepts or denies a packet:

datatype
a out = accept a| deny

@ A policy is a map from packet to packet out:

types
(o, B) Policy = "(«, ) packet —((a, ) packet) out"

@ Writing policies is supported by a specialised combinator
set

A Tutorial at NIl 62

HOL-TestGen: Theorem-prover based Testing
Testing State-less Firewalls: An Example Il

src dest | protocol | action

Internet | DMZ http accept

Internet | DMZ smtp accept
* * * deny

constdefs Internet DMZ :: "(ipv4, content) Rule"
"Internet DMZ =
(allow prot from to smtp internet dmz) ++
(allow prot from to http internet dmz)"

The policy can be modelled as follows:

constdefs test policy :: "(ipv4,content) Policy"
"test policy =deny all ++ Internet DMZ ++ ..."
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Case Studies Firewall Testing

Testing State-less Firewalls: An Example |

Internet (extern)

Intranet (intern) j‘@ I
— \ Intranet DMZ Internet
Intranet - smtp, imap all protocols except smtp
DMZ 0 - smtp
Internet 0 http,smtp -
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Testing State-less Firewalls: An Example Il

@ Using the test specification
test_spec "FUT x = test policy x"

@ results in test cases like:
e FUT
(6,smtp, ((192,169,2,8),25),((6,2,0,4),2),data) =
Some (accept
(6,smtp, ((192,169,2,8),25),((6,2,0,4),2),data))
e FUT (2,smtp, ((192,168,0,6),6),((9,0,8,0),6),data)
= Some deny
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State-full Firewalls: An Example (ftp) I State-full Firewalls: An Example (ftp) I

@ based on our state-less model:
Idea: a firewall (and policy) has an internal state:

@ the firewall state is based on the history and the current

Server Client po I icy-
fitp_init ftp_init

types (o,3,7) FWState = "a x(/3,7) Policy"

@ where FWStateTransition maps an incoming packet to a

ftp_port_request

ftp_data ftp_close ‘[ ip_ port_req new state
. close types («,3,7) FWStateTransition =
- o data "((4,7) In_Packet x(«,(,7 ) FWState) —
- ((a,3,7) FWState)"
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State-full Firewalls: An Example (ftp) Il Firewall Testing: Summary

HOL-TestGen generates test case like:

FUT [(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), close),
(6, ftp, (4, 7, 9, 8), 21), ((192, 168, 3, 1), 3), ftp_data),
(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), port request
(6, ftp, ((192, 168, 3, 1), 10), ((4, 7,9, 8), 21), init)] = °
(I(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), close), @ Non-Trivial State-Space (IP Adresses)
(6, ftp, ((4, 7, 9, 8), 21), ((192, 168, 3, 1), 3), ftp data), @ Sequence Testing used for Stateful Firewalls
(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), port_request 3) @ Realistic, but amazingly concise model in HOL!
(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), init)],
new policy)

@ Successful testing if a concrete configuration of a network
firewall correctly implements a given policy

Non-Trivial Test-Case Generation
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Outline
’ Conclusion

Conclusion Il

@ Test Hypothesis explicit and controllable by the user
(can even be verified !)

@ In HOL, Sequence Testing and Unit Testing are the same!

@ The Sequence Test Setting of HOL-TestGen is effective
( see Firewall Test Case Study)

@ HOL-Testgen is a verified test-tool
(entirely based on derived rules ...)
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Conclusion |

@ Approach based on theorem proving

e test specifications are written in HOL
e functional programming, higher-order, pattern matching

@ Test hypothesis explicit and controllable by the user
(could even be verified!)

@ Proof-state explosion controllable by the user

@ Although logically puristic, systematic unit-test of a “real”
compiler library is feasible!

@ Verified tool inside a (well-known) theorem prover
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@ Test Hypothesis explicit and controllable by the user
(can even be verified !)

@ In HOL, Sequence Testing and Unit Testing are the same!
TS pattern Unit Test:

pre x — postx(prog x)

@ The Sequence Test Setting of HOL-TestGen is effective
( see Firewall Test Case Study)

@ HOL-Testgen is a verified test-tool
(entirely based on derived rules ...)
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Conclusion Conclusion

Conclusion I Conclusion |l
@ Test Hypothesis explicit and controllable by the user @ Test Hypothesis explicit and controllable by the user
(can even be verified !) (can even be verified !)
@ In HOL, Sequence Testing and Unit Testing are the same! @ In HOL, Sequence Testing and Unit Testing are the same!
TS pattern Sequence Test: TS pattern Reactive Sequence Test:
accept trace = P(Mfold trace ooprog) accept trace = P(Mfold trace o,
(observer observer rebind subst prog))
@ The Sequence Test Setting of HOL-TestGen is effective @ The Sequence Test Setting of HOL-TestGen is effective
( see Firewall Test Case Study) ( see Firewall Test Case Study)
@ HOL-Testgen is a verified test-tool @ HOL-Testgen is a verified test-tool
(entirely based on derived rules .. .) (entirely based on derived rules . ..)
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Appendix
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The HOL-TestGen System Download

@ available, including source at:

http://www.brucker.ch/projects/hol-testgen/

@ for a “out of the box experience,” try IsaMorph:
http://www.brucker.ch/projects/isamorph/
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@ The HOL-TestGen System

‘ A Hands-on Example
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The System Architecture of HOL-TestGen

(test speciﬁcation)é HOL-TestGen

| test cases |

!

| test data |

Isabelle/HOL

érogram under tes}.e | test script |

| test harness | Test Trace
test executable SML-system | (Test Result)
1
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A Hands-on Example The HOL-TestGen Workflow A Hands-on Example Writing a Test Theory

The HOL-TestGen Workflow Writing a Test Theory
We start by
@ writing a test theory (in HOL) For using HOL-TestGen you have to build your Isabelle theories
@ writing a test specification (within the test theory) (i.e. test specifications) on top of the theory Testing instead of
. Main:
@ generating test cases
@ interactively improve generated test cases (if necessary) theory max test = Testing:
@ generating test data
@ generating a test script.
And finally we, end
@ build the test executable
@ and run the test executable.
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Writing a Test Specification Test Case Generation

@ Now, abstract test cases for our test specification can

o . o ) (automatically) generated, e.g. by issuing
Test specifications are defined similar to theorems in Isabelle,

e.g.
test_spec "prog a b = max a b" @ The generated test cases can be further processed, e.g.,
simplified using the usual Isabelle/HOL tactics.

apply(gen test cases 3 1 "prog" simp: max def)

would be the test specification for testing a a simple program

computing the maximum value of two integers. @ After generating the test cases (and test hypothesis’) you

should store your results, e.g.:

store_test_thm "max test"
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Test Data Selection

In a next step, the test cases can be refined to concrete test
data:

gen_test_data "max test"

A Tutorial at NII

HOL-TestGen: Theorem-prover based Testing
. .
A Simple Testing Theory: max

theory max test = Testing:

test_spec "prog a b = max a b"
apply(gen test cases 1 3 "prog" simp: max def)
store_test_thm "max test"
gen_test_data "max test"
generate test script "test max.sml" "max test" "prog"
"myMax.max"
end

A Tutorial at NII
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Test Script Generation

After the test data generation, HOL-TestGen is able to generate
a test script:

generate test_script "test max.sml" "max test" "prog"
"myMax.max"
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HOL-TestGen: Theorem-prover based Testing
A (Automatically Generated) Test Script

1 structure TestDriver : sig end = struct

val return = ref ~63;
fun eval x2 x1 = let val ret = myMax.max x2 x1
in ((return := ret);ret) end

fun retval () SOME(!return);

6 fun toString a = Int.toString a;
val testres = [I;

val pre 0 = [];

val post 0 = fn () = ( (eval ~23 69 = 69));

val res 0 = TestHarness.check retval pre 0 post 0;
11 val testres = testres@/[res _0];

val pre 1 = [];

val post 1 =fn () = ( (eval ~11 ~15 = ~11));

val res_.1 = TestHarness.check retval pre_1 post 1;

val testres = testres@/[res_1];
16 val _ = TestHarness. printList toString testres;

end
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Building the Test Executable

@ Assume we want to test the SML implementation

3

structure myMax = struct
fun max x y = if (x < y) then y else x
end

stored in the file max.sml.

@ The easiest option is to start an interactive SML session:

use "harness.sml";
use "max.sml";
use "test_max.sml";

It is also an option to compile the test harness, test script
and our implementation under test into one executable.
Using a foreign language interface we are able to test
arbitrary implementations (e. g., C, Java or any language
supported by the .Net framework).
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A Hands-on Example Test Result Verification

The Test Trace

Running our test executable produces the following test trace:

Test Results:

Test 0
Test 1

- SUCCESS, result:
- SUCCESS, result:

Summary:

Number
Number
Number
Number
Number

successful tests cases:

of warnings:

of errors:

of failures:

of fatal errors:

Overall result: success

A.D. Brucker and L. Briigger and B. Wolff [gle]Er=S{el=)hK
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~11

of 2 (ca. 100%)
of 2 (ca. 0%)
of 2 (ca. 0%)
of 2 (ca. 0%)
of 2 (ca. 0%)
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