
Security–Enhanced Linux
Implementation of a Formal Security Architecture

Achim D. Brucker

brucker@informatik.uni-freiburg.de

22. June 2001

Security–Enhanced Linux
Implementation of a Formal Security Architecture

Achim D. Brucker

brucker@informatik.uni-freiburg.de

22. June 2001

Dist
rib

ut
ion

lim
ite

d
to

U.S
. Gov

erm
en

t

Age
nc

ies
Only

. This
do

cu
men

t co
nt

ain
ts

NSA
inf

orm
at

ion
. Req

ue
st

for
th

e

do
cu

men
t mus

t ref
ere

d
to

th
e Dire

cto
r,

NSA
.

Achim D. Brucker 22nd June 2001 1

What’s it all about?

End systems must be able to enforce the separation of
information based on confidentiality and integrity

requirements to provide system security.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 1

What’s it all about?

End systems must be able to enforce the separation of
information based on confidentiality and integrity

requirements to provide system security.

Y Operating system security mechanism are the foundation for ensuring such separations.

Y No existing mainstream operation systems supports critical security features.

Y Application security mechanisms are vulnerable to tampering and bypassing.

Y Malicious or flawed applications can easily cause failures in system security.

Note: Security-enhanced Linux is not an attempt to correct any flaws that may
currently exist in Linux.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 2

Overview

Achim D. Brucker 21st June 2001 0

The formal Security Architecture:

FLASK

Flask is an operating system security

architecture that provides flexible support

for security policies.

Previous Next Start End Back FullScreen Quit

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 2

Overview

Achim D. Brucker 21st June 2001 0

The formal Security Architecture:

FLASK

Flask is an operating system security

architecture that provides flexible support

for security policies.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 21st June 2001 0

Implementation: SE–Linux

Security–enhanced Linux is a extension to

the Linux operation system, that provides

general support for the enforcement of

many kinds of mandatory access control

policies. SE–Linux is an implmentation of

the FLASK architecture.

Previous Next Start End Back FullScreen Quit

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 2

Overview

Achim D. Brucker 21st June 2001 0

The formal Security Architecture:

FLASK

Flask is an operating system security

architecture that provides flexible support

for security policies.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 21st June 2001 0

Implementation: SE–Linux

Security–enhanced Linux is a extension to

the Linux operation system, that provides

general support for the enforcement of

many kinds of mandatory access control

policies. SE–Linux is an implmentation of

the FLASK architecture.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 21st June 2001 0

Philosophy and Future Development

The Open Source community and the NSA

are integrating together a security layer into

the Linux Kernel and pushing the further

development of SE–Linux.

Previous Next Start End Back FullScreen Quit

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 3

The Formal Security Architecture: Flask

Flask is an operating system security architecture that provides
flexible support for security policies.

Y Joined work from National Security Agency and Secure Computing Corporation (1992).

Y First implementation using DTOS from SCC and Fluke from the University of Utah.

Y On the operating system level: Flexible support for security policies.

Y Using ideas of type enforcement to implement mandatory access control (MAC).

Y Specified using PVS, including proofs of the dynamic security policy.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 4

Discretionary Access Control (DAC)

DAC is an access control mechanism that allows systems users to allow or

disallow other users access to objects under their control.

Y The“classical”Unix (POSIX.1) file access control is an implementation of DAC.

Y Decisions are only based on user identity and ownership.

Y Each user has complete discretion of his objects.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 4

Discretionary Access Control (DAC)

DAC is an access control mechanism that allows systems users to allow or

disallow other users access to objects under their control.

Y The“classical”Unix (POSIX.1) file access control is an implementation of DAC.

Y Decisions are only based on user identity and ownership.

Y Each user has complete discretion of his objects.

! Only two major categories of users: users and superuser.

! Many programs and system services must run as superuser.

! No protection against malicious (flawed) software.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 5

Mandatory Access Control (MAC)

MAC restricts access to objects based on the sensitivity of the information

represented by the object and the formal authorization of subjects accessing

information of such sensitivity.

Y Separation of Policies, e.g. enforcing legal restriction on data

Y Containment of Policies, e.g. minimizing damages from viruses or malicious code

Y Integrity of Policies, e.g. protecting applications from modifications

Y Invocation of Policies, e.g. enforcing encryption policies

Mandatory Access Control fulfills the need of (military) multi-level security!

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 6

Type Enforcement 1/2

Access matrix defining permissions between domains and types.
Traditional type enforcement policy:

Y Each subject is labeled with a domain.

Y Each object is labeled with a type.

The Flask type enforcement policy:

Y Merges concept of domain and types.

Y A“domain” is a type which can be associated with processes.

Y Types can describe processes (subjects) and objects.

Y Policy describes type hierarchy.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 7

Type Enforcement 2/2

Y Support for many policies.

Y Separates enforcement from policy.

Y No assumptions in labels.

Y No need for trusted subjects.

Y Control entry into domain via program types.

Y Control execution of program types by domains.

Downside: Complexity of access matrix.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 8

Requesting and caching of security decisions

Map

(SID, SID, Perms)
Access Check

AVC

Obj

SI
DObj

SI
D

(C)

Object Manager Security Server

Modify Object Request

Access Query

Access Ruling

Objects

Client (SID C)

PolicyEnforcement

Access Rules

Policy Logic

SID/Context

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 9

Formal Specification: Excerpt of THEORY AVC

node allows(node, scls, ssid, tcls, tsid, perm, current time) : bool =

sclass(node) = scls

AND ssid(node) = ssid

AND tclass(node) = tcls

AND tsid(node) = tsid

AND (expiration(node) = 0 OR expiration(node) ?= current time)

AND member (perm, decided(node)) 30

AND member (perm, allowed(node))

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 10

Formal Specification using PVS

Y Formal“Top Level”specification.

Y Formal specification of the“Security Policy Model”

Y Formal proofs of dynamic security policy, e.g. security invariants hold in all system states.

Y Formal proofs of fairness and liveness (security server), e.g. being deadlock free

Y Implementation notes describing (informal) correspondence between specification and

implementation.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 11

Summary: The Flask Security Architecture

Y Cleanly separates policy from enforcement.

Y Well defined policy interfaces.

Y Support for policy changes.

Y Fine-grained control over kernel services.

Y Caching to minimize performance overhead.

Y Transparent to applications and users.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 12

The Implementation

The NSA is now integrating the Flask architecture into the Linux

operating system to transfer the technology to a larger developer

and user community.

At time of writing, the implementation is available for the latest“user”kernel

(2.4.3). Alternatively a version for kernel 2.2.19 is provided.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 13

New Kernel functions and New or Changed Utilities

Y Nearly 50 new system calls were added to the Linux kernel:

chsid, chsidfs, accept secure, mkdir secure, security change sid, send secure,

security load policy, stat secure, socket secure,. . .

Y Around 15 user utilities were afected:

chcon, killall, ls, newrole, runas, tar, ps, mknod, mkfifo,. . .

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 14

Security Policy Example

Example from Type Enforcement policy to allow system administrator to run insmod

allow sysadm_t insmod_exec_t:file x_file_perms

allow sysadm_t insmod_t:process transition

allow insmod_t insmod_exec_t:process {entrypoint execute};

allow insmod_t sysadm_t fd;inherit_fd_perms;

allow insmod_t self:capability sys_module;

allow insmod_t sysadm_t:process process sigchld;

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 15

Code Maintainability

Y Existing Functionality:

– Well contained checking, similar in complexity to existing DAC checks.

– Security Server encapsulates security policy, e.g. changes do not affect the kernel.

Y New Functionality requires:

– Definitions of permissions for new functions that need control.

– Updating distribution security policies for new permissions.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 16

Compatibility

Security–Enhanced Linux controls transparent to applications and users.

Y Default behavior allows existing interface to be unchanged.

Y Access failures return normal error codes.

Y Extended API for security–aware applications.

Y Security server interface for user–space object managers.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 17

Impact on Performance (excerpt)

Y simple file operations

Benchmark Base SELinux %

open/close 11.00 14.00 27.0
stat 8.06 10.25 27.0
fork 499.00 504.75 1.0
file copy (4k) 50652.00 49759.0 1.8

Y communication latency

Benchmark Base SELinux %

UDP 309.75 355.60 14.80
TCP 389.00 425.00 9.25
TCP connect 674.50 737.80 9.38
AF UNIX 20.60 24.60 19.00

Security comes not for free!

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 18

Benefits of Using Security–Enhanced Linux

Y Separation of information based on confidentiallity and integrity requirements.

Y Protection against unauthorized modification or disclosure of data.

Y Protection against tampering with the kernel or applications.

Y Protection against bypassing application security mechanisms.

Y Protection against the execution of untrustworthy programs.

Y Protection against interference with other processes.

Y Confinement of the potential damage caused by malicious or flawed programs.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 19

Security–Enhanced Linux distitions

Y Clean separation of policy and enforcement with well-defined policy interfaces.

Y Support for policy changes.

Y Caching for efficiency .

Y Fine-grained controls over: file system, sockets, messages, network interfaces, capabili-

ties.

Y Transparency to security-unaware applications via default behavior.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 20

Remaining (research) tasks

Y Integrate IPSEC with network mandatory controls.

Y Implement mandatory controls for NFS.

Y Improve and simplify the policy configuration system.

Y Complete the general purpose policy configuration.

Y Perform functional and performance testing.

Y Integrate existing publicly available file cryptography with file mandatory controls.

Y Packages for several Linux distributions.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 21

Related Work

Y Rule Set Based Access Control (RSBAC)

Y Type Enforcement (TE) and Domain and type Enforcement (TDE)

Y Trusted BSD

Y Linux Intrusion Detection System (LIDS)

Y Medusa DS9

Y LOMAC

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 22

NSA development meets Open Source

NSA plays the game of the Open Source community:

Y Released under the GNU General Public Licence ©.

Y CVS based development hosted on sourceforge.

Y Mailing lists for communication.

Y NSA presented work on the Linux Kernel Summit (for kernel version 2.5).

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 23

Why was Linux chosen as the base platform?

Linux was chosen as the platform for the work because of its growing success and open

development environment. Linux provides an excellent opportunity to demonstrate that this

functionality can be successful in a mainstream operating system and, at the same

time, contribute to the security of a widely used system. A Linux platform also offers an

excellent opportunity for this work to receive the widest possible review and perhaps provide

the foundation for additional security research by others.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 24

Future Development: The NSA World

Y NSA does further development (open positions!).

Y NSA pays for NAI for further development ($1.2 million 2-year contract)

Y NSA is trying to get Security–Enhanced Linux into the official kernel branch.

Y No (official) statement concerning internal use.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 25

Future Development: The Open Source World

Y Common understanding that security (within the operating system) is important.

Y Only simple security (DAC and capabilities) will be in the kernel by default.

Y The major kernel release will support a“security layer”providing a easy way to plug any

security mechanism into the kernel.

Y The Linux Security Module (lsm) project was founded for defining the security layer

(mainly driven by NSA and Immunix..

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 26

Personal Conclusion

My personal“killer application”combining formal methods, security, Linux and

open source development.

Y Fully formalized and powerful security architecture.

Y Clean implementation of this architecture for Linux.

Y Even if Security–Enhanced Linux is not included in the standard kernel, it has a great

impact of security model support of future Linux kernels.

Previous Next Start End Back FullScreen Quit

Achim D. Brucker 22nd June 2001 27

[1] NAI Labs Security-Enhanced Linux, June 2001. http://pgp.com/research/nailabs/
secure-execution/secure-linux.asp.

[2] Rule Based Access Control, June 2001. http://csrc.nist.gov/rbac/.

[3] Assurance in the Fluke Microkernel Formal Top Level Specification. February 1999.

[4] Peter Loscocco. Security-Enhanced Linux, 2001. http://www.nsa.gov/selinux/docs.html. Presentation
at the Linux Kernel 2.5 Summit.

[5] Peter Loscocco and Stephen Smalley. Integrating Flexible Support for Security Policies into the Linux
Operating System. April 2001.

[6] Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C. Tayler, S. Jeff Turner, and
John F. Farrell. The Inevitability of Failure: The Flawed Assumption of Security in Modern Computing
Environments.

[7] Stephen Smalley and Timothy Fraser. A Security Policy Configuration for the Security-Enhanced Linux.
April 2001.

[8] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hilber, David Anderson, and Jay Lepreau. The
Flask Security Architecture: Support for Diverse Security Policies. http://www.cs.utah.edu/flux/
flask.

Previous Next Start End Back FullScreen Quit

