
Theorem-prover based Testing with
HOL-TestGen

(Extended Abstract)

Achim D. Brucker and Burkhart Wolff

Information Security, eth Zurich, 8092 Zurich, Switzerland
{brucker, bwolff}@inf.ethz.ch

1 Mission

Today, essentially two software validation techniques are used: software verifi-
cation and software testing. As far as symbolic verification methods and model-
based testing techniques are concerned, the interest among researchers in the
mutual fertilization of these fields is growing.

From the verification perspective, testing offers:
– experiences on test-adequacy criteria [6], which can be viewed as new ab-

straction techniques reducing infinite models to finite and checkable ones,
– new approaches to generate counter-examples, and
– new application scenarios for verification, since black-box testing can be

used as a systematic experimentation method for reverse engineering speci-
fications for legacy systems.
From the testing perspective, symbolic verification offers:

– ways to cope with the state space explosions inherent to test case generation
techniques, and

– ways to log the testing hypothesis underlying a test explicitly.
The hol-TestGen system [3,2,1] is designed to explore and exploit these

complementary assets. Built on top of a widely-used interactive theorem prover,
it provides automatic procedures for test case generation and test-data selection
as well as interactive means to perform logical massages of the intermediate
results by derived rules. The core of hol-TestGen is a test case generation
procedure that decomposes a test specification (TS), i. e., test-property over a
program under test, into a semantically equivalent test theorem of the form:

JTC1; . . . ; TCn; THYP H1; . . . ; THYP HmK =⇒ TS

where the TCi are the test cases and THYP is a constant (semantically defined
as identity) used to mark the explicit test hypotheses Hj that are underlying this
test. Thus, a test theorem has the following meaning:

If the program under test passes the tests with a witness for all TCi
successfully, and if it satisfies all test hypothesis, it satisfies TS.

In this sense, the test theorem bridges the gap between test and verification.
Testing can be viewed as systematic weakening of specifications.

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff/


2 Workflow

hol-TestGen is an interactive (semi-automated) test tool for specification
based tests. Its theory and implementation has been described elsewhere [3,1];
here, we briefly review main concepts and outline the standard workflow. The
latter is divided into four phases: writing the test specification TS, generation of
test cases TC along with a test theorem for TS, generation of test data TD, i. e.,
constraint-free instances of TC, and the test execution (result verification) phase
involving runs of the “real code” of the program under test. (See Figure 1 for the
overall workflow.) Once a test theory is completed, documents can be generated
that represent a formal test plan. The test plan containing test theory, test spec-

program under test

test harness

test script

(Test Result)
Test Trace

test data

test cases

test specification hol-TestGen

Isabelle/HOL

SML-systemtest executable

Figure 1. Overview of the Standard Workflow of hol-TestGen

ifications, configurations of the test data and test script generation commands,
possibly extended by proofs for rules that support the overall process, is written
in an extension of the Isar language [5]. It can be processed in batch mode, but
also using the Proof General interface interactively, see Figure 2. This interface
allows for interactively stepping through a test theory in the upper sub-window
while the sub-window below shows the corresponding system state. This may be
a proof state in a test theorem development, a list of generated test data or a
list of test hypothesis.

The transition between the test-theorem generation and the test-data gener-
ation offers specific opportunities for hol-TestGen. In practice, a fully auto-
matic generated test-theorem contains too many constraints which are difficult
to resolve in the test-data generation phase. Thus, logical massage by proving
“little” lemmas used in automatic simplification leads to much better versions
of test-theorems that lead to dramatically improved coverage.

After test data generation, hol-TestGen produces a test script driving the
test using the provided test harness. The test script together with the test harness
stimulate the code for the program under test built into the test executable.
Executing the test executable runs the test and yields a test trace showing errors
in the implementation (see lower window in Figure 2).



Figure 2. A hol-TestGen Session Using Proof General

3 Case Studies

hol-TestGen has been originally designed for unit-tests; for example, [3] dis-
cusses tests of insert and delete operations for library implementations of red-
black trees. However, it can be shown that the procedure can also be used for
sequence testing of locally non-deterministic reactive systems as well: instead
of using an automaton, we build a test-specification based on its input traces.
In [4], we apply this technique to a substantial case study in the field of computer
security, namely the black-box test of a firewall configuration.

References
1. A. D. Brucker and B. Wolff. hol-TestGen 1.0.0 user guide. Technical Report

482, eth Zürich, 2005. hol-TestGen is available at: http://www.brucker.ch/
projects/hol-testgen/.

2. A. D. Brucker and B. Wolff. Interactive testing using HOL-TestGen. In
W. Grieskamp and C. Weise, editors, Formal Approaches to Testing of Software
(fates 05), volume 3997 of lncs, pages 87–102. Springer-Verlag, 2005.

3. A. D. Brucker and B. Wolff. Symbolic test case generation for primitive recursive
functions. In J. Grabowski and B. Nielsen, editors, Formal Approaches to Testing
of Software (fates 04), volume 3395 of lncs, pages 16–32, 2005.

4. A. D. Brucker and B. Wolff. Test-sequence generation with hol-TestGen – with
an application to firewall testing. In B. Meyer and Y. Gurevich, editors, tap 2007:
Tests And Proofs, volume 4454 of lncs. Springer-Verlag, 2007.

5. M. M. Wenzel. Isabelle/Isar—a versatile environment for human-readable formal
proof documents. PhD thesis, TU München, München, 2002.

6. H. Zhu, P. A. Hall, and J. H. R. May. Software unit test coverage and adequacy.
acm Computing Surveys, 29(4):366–427, 1997.

http://www.brucker.ch/projects/hol-testgen/
http://www.brucker.ch/projects/hol-testgen/

	Theorem-prover based Testing with HOL-TestGen (Extended Abstract)
	Achim D. Brucker and Burkhart Wolff

